Quaternionic Computing(16)

发布时间:2021-06-08

Quaternionic Computing

However,onenon-negligibleconsequenceofoursimulationisthatanyparallelismthattheoriginalcircuitmayhavehadislostafterweserialisethecircuitinStep1ofthesimulationalgorithm.WhileitmightbestillpossibletoparallelisepartsoftherealcircuitC′(e.g.wherewehadrealgatesintheC),intheworstcase,ifallgatesinCrequirecomplexamplitudes,thenthetopwireisalwaysusedandthecircuitdepthforC′isequaltoitsgatecounts.Thisisaconsequenceofourdecisiontoreusethesamewireasthe“topwire”foreachgate.However,itispossibletoreducethisdepthincreaseatthecostofusingseveral“topwires”andre-combiningthemtowardstheendofthecircuit.ThiswillresultinonlyaO(logs)increaseincircuitdepth.

Finally,aswehavementionedbefore,theoverallclassicalpre-andpost-processingrequireslittlecomputationale ort.ConvertingadescriptionfortheoriginalcircuitCintoC′requirestimelinearinthesizeofthecircuitdescription,i.e.O(s).Post-processingwillbeexactlythesameasfortheoriginalquantumalgorithm,sincethestatisticsofmeasuringthebottomwiresofC′(oranysubsetthereof)willbeexactlythesameasthoseofmeasuringthewiresofC,asperLemma5.

3.4.2Universality

Weknewalready,fromthepreviousresultsmentionedinSection3.2,thatitispossibletoexpressanyquantumcircuitintermsofrealgatesonly.Ifwehadnotknownalreadythatfact,wecouldhavepresumedthatquantumcircuitswouldbedescribedandgiventousintermssomeuniversalsetofgatescontainingatleastonenon-real,complexgate.Inthatcase,Theorem2wouldprovideaproofthatarealuniversalsetcouldbeconstructed,simplybyreplacinganynon-realgatesbyitsimageunderh.

Oneadvantageofthistechniqueisthatitdoesthisconversionwithverylimitedoverheadintermsofwidth,requiring1extrarebitforthewholecircuit,andnotanextrarebitforeverysubstitutedgate,asmighthavebeenexpected.InadditiontoitsusefulnessinSection4,thisisoneofthereasonthatwebelievethatthisparticularversionoftheequivalencetheoremisinterestingofitsown,whencomparedtopreviouslyknownresults.Inparticular,thefactthatitprovidesamuchtighterboundonsimulationresourcesneeded,mightproveusefulinthestudyoflowerquantumcomplexityclassesandpossiblyinquantuminformationtheory.

3.4.3Interpretation

WithLemma5,weareleftwithacuriousparadox:whilewerequireanextrarebittoperformthesimulation,wedonotcareaboutitsinitialorits nalvalue.Inparticular,itcanbeanything,eventhemaximallymixedstate.So,whatisthisrebitdoing?

LetH0andH1betheorthogonalsubspaces,eachofdimensionN,spannedbythe|b0 and|b1 basevectorsofEquations18and19,respectively.Ifastate|Φ hasonlyrealamplitudesthen|Φ0 ∈H0and|Φ1 ∈H1.Forageneric|Φ ,however,|Φ0 and|Φ1 arenotcontainedineithernsubspace,butinthespacespannedbyboth,i.e.thecompleterebitspaceHR.Inthatcase,thetoprebitwillnotbejust|0 or|1 butsomesuperpositionthereof.

Quaternionic Computing(16).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219