Quaternionic Computing(4)
时间:2025-02-24
时间:2025-02-24
Quaternionic Computing
equivalenttotheidentityoperationandbrasaresimplytransposedkets.Similarlythematrixdaggeroperator( )canbereplacedwiththematrixtransposeoperator(t).
Inthiscase,wemustreplaceunitarytransformationswithorthonormaltransformations,asthesearetheonlyinner-productpreservingoperationsonthisinner-productspace.Onecouldconceiveamodelinwhichthestatevectorsalwayshaverealamplitudes,butinwhicharbitraryunitarytransformations(onthecomplexHilbertspace)areallowed,aslongastheendresultisstillarealamplitudevector.Itiselementarytoshowthatorthonormaltransformationsaretheonlyonesthathavethisproperty,andhencethismodelisasgeneralascanbe,giventhefactthatweinsistthattheamplitudesbereal.
RebitsandStates
Inquantumcomputingandquantuminformationtheory,wede nethequbitasthemostelementaryinformation-containingsystem.Abstractly,thestateofaqubitcanbedescribedbya2-dimensionalstatevector
|Φ =α|0 +β|1 ,s.t. Φ 2=
a2+b2=1(4)
Inthiscase,thearbitraryphasefactorcanonlybe+1or 1,andtherebitequivalencerelationwhichreplacesEquation3is
Φ≡Φ′ |Φ =eiθ|Φ′ ,whereθ∈{0,π} |Φ =±|Φ′ (5)(6)
Similarlyasforqubits,singlerebitstatesdohaveanicegeometricalinterpretation:theyareisomorphictothecircumference,having|0 and|1 atoppositeextremes.OnewaytoseethisistoconsiderthelocusofpointsintheBlochsphereforwhicheiθ=1,orinotherwords,thosewithnocircularpolarisation.Unfortunately,thereisnosuchnicegeometricrepresentationofanarbitraryn-qubitstate,andwebelievethesameistrueforn-rebitstates.
Thecomputationalbasisvectorsforarebitarestill|0 and|1 ,andforarbitraryn-rebitsystemstheycanalsoberepresentedasn-bitstrings.Themeasurementruleinde ningtheprobabilitiesofobtainingthecorrespondingbitstringasaresultisessentiallythesameasEquation1,
Pr(|Φ →“b”)=| Φ|b |2= Φ|b 2
(7)
上一篇:XXX级大专儿科试题
下一篇:论马克思异化劳动理论及人的主体性