Quaternionic Computing(4)

时间:2025-02-24

Quaternionic Computing

equivalenttotheidentityoperationandbrasaresimplytransposedkets.Similarlythematrixdaggeroperator( )canbereplacedwiththematrixtransposeoperator(t).

Inthiscase,wemustreplaceunitarytransformationswithorthonormaltransformations,asthesearetheonlyinner-productpreservingoperationsonthisinner-productspace.Onecouldconceiveamodelinwhichthestatevectorsalwayshaverealamplitudes,butinwhicharbitraryunitarytransformations(onthecomplexHilbertspace)areallowed,aslongastheendresultisstillarealamplitudevector.Itiselementarytoshowthatorthonormaltransformationsaretheonlyonesthathavethisproperty,andhencethismodelisasgeneralascanbe,giventhefactthatweinsistthattheamplitudesbereal.

RebitsandStates

Inquantumcomputingandquantuminformationtheory,wede nethequbitasthemostelementaryinformation-containingsystem.Abstractly,thestateofaqubitcanbedescribedbya2-dimensionalstatevector

|Φ =α|0 +β|1 ,s.t. Φ 2=

a2+b2=1(4)

Inthiscase,thearbitraryphasefactorcanonlybe+1or 1,andtherebitequivalencerelationwhichreplacesEquation3is

Φ≡Φ′ |Φ =eiθ|Φ′ ,whereθ∈{0,π} |Φ =±|Φ′ (5)(6)

Similarlyasforqubits,singlerebitstatesdohaveanicegeometricalinterpretation:theyareisomorphictothecircumference,having|0 and|1 atoppositeextremes.OnewaytoseethisistoconsiderthelocusofpointsintheBlochsphereforwhicheiθ=1,orinotherwords,thosewithnocircularpolarisation.Unfortunately,thereisnosuchnicegeometricrepresentationofanarbitraryn-qubitstate,andwebelievethesameistrueforn-rebitstates.

Thecomputationalbasisvectorsforarebitarestill|0 and|1 ,andforarbitraryn-rebitsystemstheycanalsoberepresentedasn-bitstrings.Themeasurementruleinde ningtheprobabilitiesofobtainingthecorrespondingbitstringasaresultisessentiallythesameasEquation1,

Pr(|Φ →“b”)=| Φ|b |2= Φ|b 2

(7)

Quaternionic Computing(4).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219