Quaternionic Computing(5)
发布时间:2021-06-08
发布时间:2021-06-08
Quaternionic Computing
whereinthiscasewecandropthemodulusoperator|·|,becauseitisredundant.
Onephysicalinterpretationthatcanbegivenforrebitsorrebitsystemsisthatofasystemofphotons,whereweusethepolarisationintheusualmannertocarrytheinformation.However,thesephotonsarerestrictedtohavingzerocircularpolarisation,andbeingoperateduponwithpropagatorswhichneverintroducecircularpolarisation,i.e.orthonormaloperators.Thecomputationalbasismeasurementsarestillsimplepolarisationmeasurementsinthevertical-horizontalbasis.
RealCircuitsandRealComputationalComplexity
Wecanalsode neandconstructrealcircuits,asarestrictionofquantumcircuits.Topologically,theyarethesame,aswewillstillrequirethemtobeconstructedonlywithreversiblegates.Sinceorthonormalmatrices,likeunitarymatrices,arepreservedunderthetensoralgebrathatdescribescircuitconstructions(see[5,6]formoredetailsonthisformalism),itissu cienttorequirethattheelementarygatesbeorthonormal.Withthis,weareassuredthattheoverallcircuittransformationwillbenorm-preserving.Wecanthende neameasurementruleforcircuitstates,whichwillyieldclassicalresultswithprobabilitiesexactlyasinEquation7.Aswasnotedbefore,thisruleiscompletelygeneralanddoesnotdependonthe eldonwhichtheinner-productspaceofstatesisde ned.
RealAlgorithms
Tocompletethede nitionofthiscomputationalmodel,wemustde newhatitmeansforsuchrealcomputingdevicesto“compute”orto“solveaproblem.”Forthat,wesimplyrestrictthede nitionofaquantumalgorithmgivenabove.
De nition2(RealAlgorithm).Arealalgorithmisde nedasaclassicalTM,whichon(classical)inputxwillgeneratea(classical)descriptionofarebitcircuit.Theresultofmea-surementofthe nalstate|Φ oftherebitcircuitispost-processedbytheTMtoproduceits nal(classical)answer.
TheTMcanbeviewedashavingaccesstoauniversalcircuitevaluatorororacle,whichwillproduceaclassicalanswerb,withtheprobabilitiesde nedinEquation7.Itisimportanttonotethatnomatterwhatclassicalpost-processingtheclassicalTuringMachinedoesafterobtainingananswerfromtheOracle,its nalanswerultimatelyonlydependsontheoutcomeprobabilities.Inotherwords,fromtheTM’spointofview,itdoesnotmatterifthecircuitisphysicallyconstructedorjustsimulatedbytheOracle,nordoesitmatterwhattechnologywasusedorwhatmathematicalabstractionwasemployedinitssimulation.WhatmattersisthattheoutcomeprobabilitiesoftheOraclebethesameasthoseofcircuitdescriptionprovidedbytheTM.
3.2PreviouslyKnownResults
FromaComplexityTheorypointofview,the rstquestionthatarisesnaturallyishowdoesthisrealcomputingmodelcomparewiththequantumcomputingone.Inotherwords,canthe
上一篇:XXX级大专儿科试题
下一篇:论马克思异化劳动理论及人的主体性