Charge transport in a Tomonaga-Luttinger liquid effects of p(8)
发布时间:2021-06-08
发布时间:2021-06-08
We study the current produced in a Tomonaga-Luttinger liquid by an applied bias and by weak, point-like impurity potentials which are oscillating in time. We use bosonization to perturbatively calculate the current up to second order in the impurity potent
growslargeintheadiabaticlimitω→0.Inthislimit,wesawearlierthatthee ectivelength-dependentimpuritystrengthdivergesatsmallenergyscales,whichimpliesthattheimpuritypresentsaverylargebarriertotheelectronsandthetransmissioncoe cientisverysmall.Inthislimit,ithasbeenarguedinRefs.[44,47]thatthepumpedcharge Qisquantizedtobeanintegermultipleofq.
G.
Spin-1/2electrons
Forspin-1/2electronsinonedimension,thephe-nomenonofspin-chargeseparationoccursifthereareinteractionsbetweentheelectrons.Thespinandchargedegreesoffreedomcanbeseparatelybosonized[56,58].Thetwobosonictheoriesarecharacterizedbythepa-rameters(Ks,vs)and(Kc,vc)respectively.ForasystemwithSU(2)rotationalinvariance,Ks=1.ThegroundstateexpectationvalueinEq.(24)thentakestheform
0|ψ σR(xp,t′)ψσL(xp,t′)ψ σL(xr,t)ψσR(xr,t)
|0
~
1
[(xp xr)2 (vc(t′ t) iα)2]Kc/2
,(42)
whereσ=↑,↓isthespinlabel.Theappearanceoftwodi erentvelocities,vsandvc,andtwodi erentexpo-nents,1/2andKc/2,inEq.(42)makestheexpressionsforthebackscatteredcurrentrathercomplicated.How-ever,wecan ndthepowerlawofthedependenceofthecurrentsonthefrequenciesbyasimplescalingargu-ment.Withtheapproximationsmadeearlier,ωxrp/vs,candω0xrp/vs,cchangedfrom1→/(t0,′ wet)2KseeinthatEq.the(24)timeto1dependence/(t′ t)Kc+1hasinEq.(42).Thedependencesofthebackscatteredcurrentsonthefrequenciesthereforechangefrom|ω0ω|Kcinthespin-1/2±case.ω|2K 1inthespinlesscaseto|ω0±SinceKcispositiveingeneral,thecurrentnolongerdivergesasω0→±ω.
IV.
DISCUSSION
Wehaveconsideredthee ectsofabiasandanumberofweakandharmonicallyoscillatingpotentialsonchargetransportinaTomonaga-Luttingerliquid.Wehavecom-putedthebackscatteredcurrenttosecondorderintheamplitudesofthepotentials.Formostofourresults,wehaveassumedtheoscillationfrequencyandthebiastobesmall,butwehaverelaxedthatassumptioninEqs.(32-33).ForourassumptionofaDiracfermionwithalineardispersiontobevalidforanexperimentallyreal-izablesystem,wemustofcourseassumethatωandω0aresmallcomparedtothebandwidthoftheelectrons.We ndthatthebackscatteredcurrentismaximizedforatravelingpotentialwaveinwhichthepositionsand
8
phasesoftheoscillatingpotentialsarerelatedinalinear
way.Forspinlesselectrons,iftheinteractionsaresu -cientlyrepulsivewithK<1/2,thebackscatteredcur-rentdivergesforspecialvaluesofthebias,namely,forω0the→correction±ω.Fortoanytherepulsivedi erentialinteraction,conductancewithdivergesK<1,forω0liaritywhich→±ωarises.Finally,whenweseveralhaveimpuritiespointedoutareapresentpecu-andK<1/2;namely,thecurrentmustingeneralbeanon-monotonicfunctionofthepumpingfrequencywhenthereisnobias.
Itwouldbeusefultogeneralizeourresultstothecaseofoneormorestrongimpuritypotentials,orweaktunnelingsbetweentwoTomonaga-Luttingerliquids;thetechniqueofbosonizationcanbeusedinsuchsituationsalso.
Acknowledgments
A.A.thanksCSIR,IndiaforaJuniorResearchFel-lowship.D.S.thanksSourinDasandSumathiRaoforstimulatingdiscussions.WethankDST,Indiafor nan-cialsupportundertheprojectsSR/FST/PSI-022/2000andSP/S2/M-11/2000.
APPENDIXA:SOMEMATHEMATICAL
FORMULAE
Weneedtoevaluateintegralsoftheform
∞
dτ
exp(±i τ)
x
(τ2 x2)K
=
√2
2√
2x
(τ2 x2)K
=
2
ν
∞n
(z/2)2n
2
( 1)
n=0