Charge transport in a Tomonaga-Luttinger liquid effects of p(7)
发布时间:2021-06-08
发布时间:2021-06-08
We study the current produced in a Tomonaga-Luttinger liquid by an applied bias and by weak, point-like impurity potentials which are oscillating in time. We use bosonization to perturbatively calculate the current up to second order in the impurity potent
FIG.2:(Coloronline)DCpartofthebackscatteredcurrentasafunctionofthebiasω0fortwoimpurities,whenω±arenotsmall.Thered(dot),magenta(dash),blue(dash-dot)andblack(solid)linesshowtheresultsforK=1/4,1/2,3/4and1respectively.WehavetakenU1=U2,2kFx12=π/2,φ12= π/4,andωx12/v=1.
Fornon-interactingfermionswithK=1,we ndfromEqs.(27-28)thatinthesingleimpuritycase,
Ippp
bs,dc=
qU2
4πv2ω0cos(2ωt+2φp).(34)
F
ThetotalcurrentisgivenbyI= I0+Ipp+Ipp
bs,dcbs,ac,
2I=
qω0
vF
.(35)
Thisisconsistentwiththefactthatthetransmission
probabilityacrossastaticpoint-likebarrierofheightUis1 (U/vF)2uptoorderU2.Forthecaseofseveralimpurities,we ndfromEqs.(29-30)that
IprUr
bs,dc=
qUp2πv2ω0cos(2kFxrp)cos(2ωt+φp+φr).
F
(37)
Notethatthedcpartofthecurrentisgivenbyalinearcombinationofthepurebiaspartandthepurepumpingpart,anditagreeswiththeexpressiongiveninEq.(13).ForK=1/2,wecanobtainthedi erentpartsofthecurrentsbytakingthelimitK→1/2inEqs.(27-28)
7
(29-30).We ndthat
ppqUp
2=
4παv
[sgn(ω+)cos(2kFxrp+φrp)+sgn(ω )cos(2kFxrp φrp)],
ppqUp
2=
ω+
π
ln|
4παv
[(sgn(ω+)+sgn(ω ))cos(2ωt+φp+φr)+
2
ω
|sin(2ωt+φp+φr)].
(38)
ThustheDCpartsofthecurrentsdonotdependontheprecisevaluesofωandω0iftheyareunequal,andtheyhavea nitediscontinuitywhenωcrosses±ω0.
Toconclude,weseethatthedcpartsofthecurrentsarelinearfunctionsofω0,ωforK=1,andarepiecewiseconstantfunctionsofω0,ωforK=1/2.
F.
Extendedimpurities
TheanalysisinSubsec.III.Dcanbereadilygener-alizedtothecasewherethereisanextendedregionof
oscillatingpotentials[50].LetusreplacethediscretesetofpotentialsgiveninEq.(3)byanoscillatingpotentialofthefollowingform
U(t)=
dxU(x)cos[ωt+φ(x)].(39)WethenseefromEq.(31)thatthedcpartofthe
backscatteredcurrentisgivenby
Iq
bs,dc=
v
×[sgn(ω+)|ω+|2K 2K 2
1
| dxU(x)ei[2kFx+φ(x)]|2
+sgn(ω )|ω |2K 1
| dxU(x)ei[2kFx φ(x)]|2].
(40)
tosecondorderinU(x).Forthepurepumpingcasewithω0=0,we ndthat
I
q
bs,dc=× v
dxdx′U(x)U 2K 2
ω2K 1(x′)sin[2kF(x x′)]
×sin[φ(x) φ(x′)].
(41)
Eq.(41)impliesthatthechargepumpedpercycle,
Q=(2π/ω)Ibs,dc,scalesasω2K 2;forK<1,this