Charge transport in a Tomonaga-Luttinger liquid effects of p(7)

发布时间:2021-06-08

We study the current produced in a Tomonaga-Luttinger liquid by an applied bias and by weak, point-like impurity potentials which are oscillating in time. We use bosonization to perturbatively calculate the current up to second order in the impurity potent

FIG.2:(Coloronline)DCpartofthebackscatteredcurrentasafunctionofthebiasω0fortwoimpurities,whenω±arenotsmall.Thered(dot),magenta(dash),blue(dash-dot)andblack(solid)linesshowtheresultsforK=1/4,1/2,3/4and1respectively.WehavetakenU1=U2,2kFx12=π/2,φ12= π/4,andωx12/v=1.

Fornon-interactingfermionswithK=1,we ndfromEqs.(27-28)thatinthesingleimpuritycase,

Ippp

bs,dc=

qU2

4πv2ω0cos(2ωt+2φp).(34)

F

ThetotalcurrentisgivenbyI= I0+Ipp+Ipp

bs,dcbs,ac,

2I=

qω0

vF

.(35)

Thisisconsistentwiththefactthatthetransmission

probabilityacrossastaticpoint-likebarrierofheightUis1 (U/vF)2uptoorderU2.Forthecaseofseveralimpurities,we ndfromEqs.(29-30)that

IprUr

bs,dc=

qUp2πv2ω0cos(2kFxrp)cos(2ωt+φp+φr).

F

(37)

Notethatthedcpartofthecurrentisgivenbyalinearcombinationofthepurebiaspartandthepurepumpingpart,anditagreeswiththeexpressiongiveninEq.(13).ForK=1/2,wecanobtainthedi erentpartsofthecurrentsbytakingthelimitK→1/2inEqs.(27-28)

7

(29-30).We ndthat

ppqUp

2=

4παv

[sgn(ω+)cos(2kFxrp+φrp)+sgn(ω )cos(2kFxrp φrp)],

ppqUp

2=

ω+

π

ln|

4παv

[(sgn(ω+)+sgn(ω ))cos(2ωt+φp+φr)+

2

ω

|sin(2ωt+φp+φr)].

(38)

ThustheDCpartsofthecurrentsdonotdependontheprecisevaluesofωandω0iftheyareunequal,andtheyhavea nitediscontinuitywhenωcrosses±ω0.

Toconclude,weseethatthedcpartsofthecurrentsarelinearfunctionsofω0,ωforK=1,andarepiecewiseconstantfunctionsofω0,ωforK=1/2.

F.

Extendedimpurities

TheanalysisinSubsec.III.Dcanbereadilygener-alizedtothecasewherethereisanextendedregionof

oscillatingpotentials[50].LetusreplacethediscretesetofpotentialsgiveninEq.(3)byanoscillatingpotentialofthefollowingform

U(t)=

dxU(x)cos[ωt+φ(x)].(39)WethenseefromEq.(31)thatthedcpartofthe

backscatteredcurrentisgivenby

Iq

bs,dc=

v

×[sgn(ω+)|ω+|2K 2K 2

1

| dxU(x)ei[2kFx+φ(x)]|2

+sgn(ω )|ω |2K 1

| dxU(x)ei[2kFx φ(x)]|2].

(40)

tosecondorderinU(x).Forthepurepumpingcasewithω0=0,we ndthat

I

q

bs,dc=× v

dxdx′U(x)U 2K 2

ω2K 1(x′)sin[2kF(x x′)]

×sin[φ(x) φ(x′)].

(41)

Eq.(41)impliesthatthechargepumpedpercycle,

Q=(2π/ω)Ibs,dc,scalesasω2K 2;forK<1,this

Charge transport in a Tomonaga-Luttinger liquid effects of p(7).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219