Charge transport in a Tomonaga-Luttinger liquid effects of p(4)
发布时间:2021-06-08
发布时间:2021-06-08
We study the current produced in a Tomonaga-Luttinger liquid by an applied bias and by weak, point-like impurity potentials which are oscillating in time. We use bosonization to perturbatively calculate the current up to second order in the impurity potent
currentisbackscatteredtotheright.Thetotalcurrent owingtotherightisgivenbyI= I0+Ibs,whereIbsisthecorrectiontothecurrentduetobackscatteringbytheimpurities.Thebackscatteredcurrentisde nedasI dN bs(t)=q
R2
dxdyρ(x)V(x y)ρ(y),(19)
whereV(x)isarealand
evenfunction
of
x
,
andtheden-sityρ=ψ ψisgiveninEq.(2).WecanwriteEq.(19)inasimplewayifV(x)issoshortrangedthattheargu-mentsxandyofthetwodensity eldscanbesetequal
4
ingtheanticommu-tationrelationsbetweenthefermion elds,weobtain
Hint=g2
dxψ RψRψ
LψL,(20)whereg2isrelatedtotheFourierasg2=V
transformofV(x)(0) V (2kF).De ningaparameterγ=g2/(2πvF),wehavetherelations
K=
1 γ
2v
φ
2
φ
2παη Rη Lei2√
2πα
η Lη R
e
i2
√(2π)2[(xp xr)2 (v(t′ t) iα)2]K
(24)
forallvaluesofK.
Forthenon-interactingcasewithK=1,wecaneval-uatetheabovegroundstateexpectationvaluedirectlywithoutusingbosonization.Weusethesecondquan-tizedexpressionsforthefermion elds,
ψ ∞
dk
R=
∞
ik( x vFt)2π
aLke,
(25)
wherethecreationandannihilationoperatorssatisfythe
anticommutationrelations{aRk,a
k k′).ThegroundstateRk′|0 }is=annihilated{aLk,aLk′2πδ(}by
=aRk,aLkfork>0andbya Rk,a
Lkfork<0.Wethen ndthatthegroundstateexpectationvalueagreeswiththeresultgiveninEq.(24)forK=1andv=vF.
Ingeneral,thebackscatteredcurrenthastwoparts:oneindependentoftimewhichwecallIdc,andtheothervaryingwithtime,withfrequency2ωtosecondorderinUp,whichwecallIac.Iacdoesnotcontributetoany