Charge transport in a Tomonaga-Luttinger liquid effects of p(3)
发布时间:2021-06-08
发布时间:2021-06-08
We study the current produced in a Tomonaga-Luttinger liquid by an applied bias and by weak, point-like impurity potentials which are oscillating in time. We use bosonization to perturbatively calculate the current up to second order in the impurity potent
whilethesecondconditionimpliesthatweareonlycon-sideringstatesclosetotheFermienergy.Keepingtermsonlyupto rstorderinUp/vF,we ndthatonlythe rstFloquetsidebandsareexcited,and
tL,1=tR,1=
i
2vF
Upeiφp.
p
rL,1=
i
p+φp)2vU.
F
pei(2kFxp
ri
R,1=
kFxp+φp)2v,
(10)
F
Upei( 2p
Wealso ndthattheunitarityrelationsinEq.(9)are
satis edup
tosecond
orderinUp/vF,andthereforetL,0andtR,0aregivenby
|tL,0|2=1 |rR,1|2 |rR, 1|2 ||ttL,1t=1 |r|2 |tL, 1|2,
|R,0|2L,1|2 |rL, 1|2 R,1|2 |tR, 1|2,
(11)tothatorderinUp/vF.NotethattheamplitudesgiveninEqs.(10-11)areallindependentofE0undertheap-proximationsthatwehavemade.
Thedcpartofthecurrentin,say,therightleadisgivenby[23]IR,dc=q
∞
dE0
∞
3
[|tR,0|2+|tR,1|2+|tR, 1|2]
+
qω
2π2π
+
qω0
2πv2Fxrp)sin(φrp),(13)
F
UpUrsin(2kp<r
wherexrp=xr xpandφrp=φr φp.Eq.(13)showsthee ectsofabias(ω0)andharmonicallyoscillatingpotentials(ω).Forthepurepumpingcasewithω0=0,Eq.(13)agreeswiththeresultspresentedinRef.[38];notethatthepumpedcurrentdependsonsin(φrp).
Itisinterestingtonotethatthe rsttermisjusttheballisticconductanceofacleanwiremultipliedbythebias,thesecondtermisacorrectiontothecleancasebe-causeofthepresenceofimpurities,andthethirdtermisthepumpedcurrent.Inthenon-interactingcase,thebiascomponentandthepumpedcomponentseparateout,butfortheinteractingcase,thecurrentinvolvespowersofω0±ω.
III.
BOSONIZATIONCALCULATIONOFBACKSCATTEREDCURRENTA.
Backscatteringcurrentoperator
Wenowcomputethecurrentinasystemofinteract-ingelectronsusingthebackscatteringcurrentoperatorintroducedinRefs.[45,46,47,48].
Letustaketheimpuritypotentialstobeabsentattimet= ∞;thentheyaregraduallyswitchedon.Attheinitialtime,H0commuteswiththenumberoperators
oftheleftmovingandright LandN
movingfermions,N
Rrespectively.Intheabsenceofanyimpuritypoten-tials,alltherightmoversoriginateintheleftreservoirwhichismaintainedatthechemicalpotentialµL,andalltheleftmoversoriginateintherightreservoirmain-tainedatthechemicalpotentialµR.Hence,thesystemisinitiallydescribedinthegrandcanonicalensemblebythechemicalpotentialsµLandµRwhicharethecientsofthenumberoperatorsN
coe -LandN Rrespectively.Wewillworkintheinteractionrepresentation,takingthechemicalpotentialstobepartoftheinteraction.Thisin-troducestimeiµdependencesintothefermionicoperatorsψLψ→RandψLeLt
andandψRψψ →ψReiµRt.Theoperators
ψLappearingininHimp(seeEqs.(1)and(2))L
thereforeRpickupfactorsofe±iω0t.
Iftherewerenoimpurities,therewouldbeacur-rent owingtotheleftgivenbyI0=q2Vbias/(2π)=qω0/(2π).Inthepresenceofimpurities,someofthis