Charge transport in a Tomonaga-Luttinger liquid effects of p(5)
发布时间:2021-06-08
发布时间:2021-06-08
We study the current produced in a Tomonaga-Luttinger liquid by an applied bias and by weak, point-like impurity potentials which are oscillating in time. We use bosonization to perturbatively calculate the current up to second order in the impurity potent
chargetransferasitsaverageoveracycleiszero.Inthenextfewsubsections,wecalculatetheexpectationvalueofthebackscatteredcurrentforvariouscasesandstudythemindi erentlimits.Tosimplifyourcalculations,weagainassumethatωxrp/vandω0xrp/varesmallandthatω≥0.Itwillbeconvenienttode nethecombinations
ω+=ω0+ω,
andω =ω0 ω.
(26)
C.
Singleimpurity
ThiscasehasbeendiscussedinRef.[48];werepro-ducetheresultshereforthesakeofcompleteness.SomedetailsofthecalculationsareprovidedintheAppendix.
IppqUp
2bs,dc
=
v
×[sgn(ω+)|ω+|2K 2K 2
1+sgn(ω )|ω |2K 1],
(27)
IppqUp
2bs,ac=
v
×[sgn(ω+)|ω+ 2K 2
ωt+|2K 1
×cos(22φp+sgn(ω+)πK)
+sgn(ω )|ω+2 φ|2K 1
×cos(2ωtp sgn(ω )πK)],
(28)
wheresgn( )≡1if >0,0if =0and 1if <0.InEqs.(27-28),wenotethatthecurrentsbecomelargeinthelimitω0tiveexpansionin→powers±ωifKof<Up1/breaks2.Hencedownthewhenperturba-ω0iscloseto±ω[48].Theregionofvalidityoftheperturba-tiveexpansioncanbeestimatedusingaRGanalysisasdiscussedbelow.
Eqs.(27-28)implythatforthepurewithω0=0,Ipppp
pumpingcase
bs,dc=Ibs,ac=0.Forasingleimpurity,therefore,chargepumpingdoesnotoccur,whetherornotthereareinteractionsbetweentheelectrons.Forthe
purebiascasewithω=0andφp=0,wehaveIpp
Ippbs,ac~Upω20K 1bs,dc+2.Thusthebackscatteringcorrectiontotheconductancegivenby Ibs,dc/Vbias= qIbs,dc/ω0is
proportionaltoU22K 2
InthepresencepVofbias.
bothbiasandpumping,thecorrec-tiontothedi erentialconductance G= q Ibs,dc/ ωgrowslargeasUwithresultsp2
|ω±|2K 2forω+orωconsistentbasedonRGcalculations →0.This[9,10].isNamely,thepresenceofinteractionsbetweentheelec-tronse ectivelymakestheimpuritystrengthUpafunc-tionofthelengthscale;thisisdescribedbytheRGequa-tiondUp/dlnL=(1 K)Up,to rstorderinUp(L).HencethevalueofUp(L)atalengthscaleLisrelatedtoitsvalueUpde nedatamicroscopiclengthscale(say,
5
α)asUp(L)=(L/α)1 KUp.Inourcase,thelengthscaleLissetbyv/|ω+ritystrengthUp(L)therefore|orv/increases|ω |.Theas(e ectivev/|ω±|)1impu- KUpforω+orω[Up(L)]2~U p2
|ω→±|20,K and2.Thisthedivergencecorrectionmust Gbegrowscuto as
when Gbecomesoforder1,inunitsofq2/(2π).Restor-ingtheappropriatedimensionfulquantities,weseethattheaboveRGanalysisandperturbativeexpansionarevalidaslongasUp/v<<(α|ω±|/v)1 K.
D.
Severalimpurities
Wenowconsiderthecaseofseveralimpuritieslocatedatxpwiththephasesoftheoscillatingpotentialsbeingφp.Weagainde nexrpandφrpasinEq.(13).Thebackscattered currentcanbewrittenasIbs=ofINext,we ndthat
bsaregiven pppIbs+IprThedcandacpartspp
p<rbs.intheprevioussubsection.IprUr
bs,dc
=
qUpv
×[sgn(ω+)|ω+|2K 2K 2
1cos(2kFxrp+φrp)
+sgn(ω )|ω |2K 1cos(2kFxrp φrp)],
(29)
Ipr=qUpUr
2K 2
bs,ac
v cos(2kFxrp)
×[sgn(ω+)|ω+ωt+|2K 1
×cos(2φp+φr+sgn(ω+)πK)
+sgn(ω )|ω |2K 1
×cos(2ωt+φp+φr sgn(ω )πK)].
(30)
Forthepurepumpingcasewithω0=0,weseethatIprω2K 1sin(2kFxrp)sin(φrp),whileIprbs,dc~[49]bs,ac=0.Eq.(29)di ersfromtheresultsgiveninRef.duetothetermsinvolving2kFxrp.
WenotethatthecurrentsgiveninEqs.(27-28)and(29-30)allreversesignifwechangeω0→ ω0andxp xpforallp.Thisisanaturalconsequenceofparity→reversal,i.e.,interchangeofleftandright.
ThedcpartsgiveninEqs.(27)and(29)becombined togiveatotalcurrentIbs,dc= canpppIIprbs,dc+p<rbs,dc,Ibs,dc=
q
2K 2
v
×[sgn(ω+)|ω+|
2K 1
|
Upei(2kFxp+φp)2
p
|+sgn(ω )|ω |2K 1|
Upei(2kFxp φp)p
|2].
(31)