Charge transport in a Tomonaga-Luttinger liquid effects of p(2)
发布时间:2021-06-08
发布时间:2021-06-08
We study the current produced in a Tomonaga-Luttinger liquid by an applied bias and by weak, point-like impurity potentials which are oscillating in time. We use bosonization to perturbatively calculate the current up to second order in the impurity potent
point-likeimpuritiesisgivenbyH
=H 0+H imp,whereH 0=
dxivF( ψ ψRR),
H imp= x
dx(x)
δ(x xp)Up(t)ψ (x)ψ(x),
p
ψ(x)=ψReikFx+ψL(x)e ikFx,
(1)
whereψLandψRarethefermionic eldoperatorsoftheleftandrightmovingelectrons,vFistheFermivelocity,andkFistheFermiwavenumberwhichoriginatesfromsomeunderlyingmicroscopicmodel.Forinstance,onemayhaveasystemofnon-relativisticelectronswitha
FermienergyEF=k2
F/(2m)andvF=kF/m.(WearesettingnianH
Planck’sconstant equaltounity).TheHamilto-0isobtainedbylinearizingthedispersionthetwoFermipointsgivenbyk=±kF.H
aroundimparisesfromthetime-dependentimpuritieswhichhavestrengthsUp(t);thisHamiltoniancouplesleftandrightmoving eldssince
ψ ψ=ψ RψR+ψ LψL+ψ RψLe i2kFx+ψ
LψRei2kFx.
(2)
Wewillassumethat
Up(t)=Upcos(ωt+φp),(3)
i.e.,allimpuritiesvaryharmonicallyintimewiththe
samefrequencyω.WewillnowuseFloquetscatteringtheoryandcarryoutaperturbativeexpansioninthedi-mensionlessquantitiesUp/vF.
Theequationsofmotioninthepresenceofasingleδ-functionimpurityδ(x xp)Upcos(ωt+φp)isasfollows:
i ψR
x
=δ(x xp)Upcos(ωt+φp)(ψR+ψLe i2kFxp),i
ψL x
=δ(x xp)Upcos(ωt+φp)(ψL+ψRei2kFxp).
(4)
Ifwede nethelinearcombinationsψ+=ψReikFxp+ψLe ikFxpandψ =ψReikFxp ψLe ikFxp,we ndthati ψ x=0,
i ψ+
x
=2δ(x xp)Upcos(ωt+φp)ψ+.
(5)
Byintegratingoveralittleregionfromxpcontinuousatthepoint x =toxpxp+ ,we ndthatψ+is,whileψ hasadiscontinuitygivenby
ivF[ψ (xp+ ) ψ (xp )]=2Upcos(ωt+φp)ψ+(xp).
(6)
2
Wewouldliketonoteherethatitisthetermsψ RψR+ψ
necessarytoretain
LψLinEq.(2)inordertohavecon-tinuityofψ+.Insomepapers,thesetermsarenottakenintoconsideration.Onethenrunsintothemathemati-calpeculiaritythatψ+andψ arebothdiscontinuousatx=xp,andthediscontinuityistakentobepropor-tionaltotheirvaluesatthatpoint;butthosevaluesareactuallyill-de nedduetothediscontinuity.
WecannowsolveEqs.(4)alongwiththebound-aryconditionsinEq.(6).Forasingleδ-functionim-purityoscillatingwithfrequencyωatx=xp,letusconsiderawavecomingfromtheleft(x<xp)withenergyE0andunitamplitude.Notethatwearemea-suringenergieswithrespecttoaFermienergy,sothatE0=0correspondstoafermionattheFermienergy.Duetotheoscillatingimpuritypotential,thewavewillbere ectedbacktotheleftwithenergyEn0),ortransmittedto≡theE0+nωandamplitudeSLL(En,Eright(x>xp)withenergyEnandamplitudeSRL(En,E0),wheren=0,±1,±2,···de nestheFloquetsidebands[23].NotethatsinceweareconsideringaDiracfermion,thereisnoupperorlowerboundtotheenergyEn,andthevelocityvFisindependentoftheenergy.(Thisisunlikethecaseofanon-relativisticfermionorafermiononalatticewherethereisalowerorupperboundtotheenergy,andthevelocityisafunctionoftheenergy).Tobeexplicit,thewavefunctionisgivenbyψR=ei(k0x E0t)forx<xp,
= SRL(En,E0)ei(knx Ent)forx>xp,n
ψL=
SLL(En,E0)ei( knx Ent)
for
x<xp,
n=0
forx>xp,
(7)
wherekn=En/vF.Similarly,wecanconsiderawavecomingfromtherightwithenergyE0andunitampli-tude;itwillbere ectedbacktotherightwithamplitudeSRR(En,E0)ortransmittedtotheleftwithamplitudeSLR(En,E0).Letussimplifythenotationbyde ning
rL,n=SLL(En,E0),tL,n=SLR(En,E0),
tR,n=SRL(En,E0),
rR,n=SRR(En,E0).(8)
Duetounitarity,wehavetherelations
[|rL,nn
|2+|tR,n|2]=1,
[|rR,nL,nn|2+|t|2]=1.
(9)
Thedi erentFloquetscatteringamplitudesrα,nandtα,ncanbefoundbyusingtheboundaryconditionsinEq.(6).Wewillconsiderthecaseofseveralimpuri-tieslabeledbytheindexpasinEq.(1).Tosimplifyourcalculations,wewillassumethatω(xp)/vFaresmallforallpairsofimpurities xr)/vFandE0(xp xrpandr;the rstconditioncorrespondstotheadiabaticlimit,