新课标人教A版数学必修2教案完整版(11)

发布时间:2021-06-08

新课标人教A版数学必修2教案完整版

a∥b

=>a∥c

c∥b

强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 (2)例2(投影片)

例2的讲解让学生掌握了公理4的运用 (3)教材P47探究

让学生在思考和交流中提升了对公理4的运用能力。 3、组织学生思考教材P47的思考题

(投影)

让学生观察、思考:

∠ADC与A'D'C'、∠ADC与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何? 生:∠ADC = A'D'C',∠ADC + ∠A'B'C' = 1800

教师画出更具一般性的图形,师生共同归纳出如下定理

等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

教师强调:并非所有关于平面图形的结论都可以推广到空间中来。 4、以教师讲授为主,师生共同交流,导出异面直线所成的角的概念。

(1)师:如图,已知异面直线a、b,经过空间中任一点O作直线a'∥a、b'∥b,我们把a'与b'所成的锐角(或直角)叫异面直线a与b所成的角(夹角)。

(2)强调:

① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;

② 两条异面直线所成的角θ∈(0,;

③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;

⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 (3)例3(投影)

例3的给出让学生掌握了如何求异面直线所成的角,从而巩固了所学知识。 (三)课堂练习 教材P49 练习1、2

充分调动学生动手的积极性,教师适时给予肯定。

2

新课标人教A版数学必修2教案完整版

(四)课堂小结

在师生互动中让学生了解:

(1)本节课学习了哪些知识内容?

(2)计算异面直线所成的角应注意什么? (五)课后作业

1、判断题:

(1)a∥b c⊥a => c⊥b ( ) (1)a⊥c b⊥c => a⊥b ( ) 2、填空题:

在正方体ABCD-A'B'C'D'中,与BD'成异面直线的有 ________ 条。

§2.1.3 — 2.1.4 空间中直线与平面、 平面与平面之间的位置关系

一、教学目标: 1、知识与技能

(1)了解空间中直线与平面的位置关系; (2)了解空间中平面与平面的位置关系;

(3)培养学生的空间想象能力。 2、过程与方法

(1)学生通过观察与类比加深了对这些位置关系的理解、掌握; (2)让学生利用已有的知识与经验归纳整理本节所学知识。 二、教学重点、难点

重点:空间直线与平面、平面与平面之间的位置关系。

难点:用图形表达直线与平面、平面与平面的位置关系。 三、学法与教学用具

1、学法:学生借助实物,通过观察、类比、思考等,较好地完成本节课的教学目标。 2、教学用具:投影仪、投影片、长方体模型 四、教学思想

(一)创设情景、导入课题

教师以生活中的实例以及课本P49的思考题为载体,提出了:空间中直线与平面有多少种位置关系?(板书课题) (二)研探新知

1、引导学生观察、思考身边的实物,从而直观、准确地归纳出直线与平面有三种位置关系: (1)直线在平面内 —— 有无数个公共点

(2)直线与平面相交 —— 有且只有一个公共点

(3)直线在平面平行 —— 没有公共点

指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示

新课标人教A版数学必修2教案完整版(11).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219