生物统计附实验设计(明道绪__第四版)最全资料(4)
发布时间:2021-06-08
发布时间:2021-06-08
精心整理,复习专用,全程助考,让您考试无忧
统计图:长条图、圆图、线图、直方图、折线图 7、为什么变异系数要与平均数、标准差配合使用?
答:因为变异系数的大小,同时受到平均数和标准差两个统计数的影响,因而在利用变异系数表示资料的变异程度时,最好将平均数和标准差也列出 8、标准误与标准差有何联系与区别?
答:标准差和标准误都是变异指标,但它们之间有区别,也有联系。区别: ①概念不同;标准差是描述观察值(个体值)之间的变异程度;标准误是描述样本均数的抽样误差;②用途不同;标准差与均数结合估计参考值范围,计算变异系数,计算标准误等。标准误用于估计参数的可信区间,进行假设检验等。③它们与样本含量的关系不同: 当样本含量 n 足够大时,标准差趋向稳定;而标准误随n的增大而减小,甚至趋于0 。联系: 标准差,标准误均为变异指标,当样本含量不变时,标准误与标准差成正比。
9、样本平均数抽样总体与原始总体的两个参数间有何联系? 10、显著性检验的基本步骤是什么?根据什么确定显著水平? 答:基本步骤:
1,首先对试验样本所在作假设
2,在无效假设成立的前提下,构造合适的统计数,并研究试验所得统计数的抽样分布,计算无效假设正确的概率
3,根据“小概率事件实际不可能原理”否定或接受无效假设
在假设检验中,无效假设是否被否定的依据是“小概率事件不可能原理”。 11、均数差异显著性检验中,肯定和否定无效假设的依据是什么? 12、什么是统计推断?为什么统计推断的结论有可能发生错误?有哪两类错误?如何降低犯两类错误的概率?
一:统计推断是指根据样本和假定模型对总体作出的以概率形式表述的推断 二:由试验的真实差异跟抽样误差引起的
三:第一类错误:把非真实差异错判为真实差异
第二类差异:把真实差异错判为非真实差异 四:适当样本含量
13、进行显著性检验应注意什么问题?如何理解显著性检验结论中的“差异不显著”、“差异显著”、“差异极显著”? 答:注意:
1,要有合理的试验或抽样设计,保证试验结果的可靠、正确、且处理间要有可比性。 2,选用的假设检验方法应符合其应用条件 3,要正确理解差异显著或极显著的统计意义 4,合理建立统计假设,正确计算检验统计数 “差异不显著”:有两种可能:一:它们所在的总体平均数不相同,但被试验误差所掩盖,表现不出差异的显著性 二:它们所在的总体平均数的确无差异 “差异显著”或:“差异极显著”:表面上如此差异的不同样本来自同一总体的可能性小于0.05或0.01,已到达了可以认为它们所在的总体平均数不相同的显著水平。但有些试验结果虽然差异大,但误差大,也许得不出“差异显著”的结论,而有些试验结果虽然差异小,但由于试验误差小,反而可能推断为“差异显著“
14、配对试验设计与非配对试验设计有何区别?
区别:非配对试验设计是指当进行有两个处理的试验时,将试验单位随机分成两个组,然后对两组随机实施一个处理。
配对试验设计是先根据配对的要求将试验单位两两配对,然后将配对成子的两个试验单位随机分配到两个处理组中。要求配对成子的两个试验单位的初始条件尽量一致,不同对子间试验单位的初始条件允许有差异
上一篇:安全质量环保部安全责任书