四川省资阳市2013届高三第二次高考模拟考试数学(5)
发布时间:2021-06-08
发布时间:2021-06-08
F
为AM的中点,又 E为AA1的中点,∴EF//A1M,
在三棱柱ABC A1B1C1中,D,M分别为A1B1,AB的中点,
A1D//BM
,且A1D BM,
则四边形A1DBM为平行四边形, A1M//BD,
EF//BD,又 BD 平面BC1D,EF 平面BC1D,
··························································································· 6 EF//平面BC1D. ·
分
(Ⅱ)设AC上存在一点G,使得平面EFG将三棱柱分割成两部分的体积之比为1︰31,则VE AFG:VABC ABC 1:32.
111
1
VE AFGVABC A1B1C1
1
1AF AG AE
AB AC A1A
2
111AG1AG
,
342AC24AC1AG1AG3
,即··································· 12分 ,所以符合要求的点G存在.·
24AC32AC4
19.解析 (Ⅰ)由2an 1 3Sn 3n 4,得2an 3Sn 1 3n 1(n 2), 两式相减得2an 1 2an 3(Sn Sn 1) 3,即2an 1 an 3, ·································· 2分 ∴an 1 an
21
32
,则an 1 1 (an 1)(n 2), ············································ 4分
2
1
1
1 , 由a1 2,又2a2 3S1 7,得a2 ,则
a1 12 122
1
1
a2 1
故数列{an 1}是以a1 1 1为首项, 为公比的等比数列.
2
n 1
则an 1 (a1 1) ( )n 1 ( )n 1,∴······································· 6分 an ( ) 1, ·
1
111
222
(Ⅱ)由(Ⅰ)得,bn [( )n 1 1] n2 ( )n 1 n2,
2
2
11
由题意得b2n 1 b2n,则有 ( )2n 2 (2n 1)2 ( )2n 1 (2n)2,
2
2
11
即 ( )
2
1
2n 2
[1 ( )] (2n 1) (2n)
2
n
*
1
22
,∴
(4n 1) 4
6
n
n
, ······························· 10分
(4 1) 4
6
2,
而
(4n 1) 4
6
对于n N时单调递减,则
(4n 1) 4
6
的最大值为
故 2.·········································································································· 12分 20.解析(Ⅰ)将(1,1)
与代入椭圆C的方程,
1 1
1, 3 a2b2
得 解得a2 3,b2
2 3 3 1,
22
4b 2a
.
上一篇:电力电子课程设计报告
下一篇:网络广告监测