Singular or non-Fermi liquids(9)
时间:2025-02-23
时间:2025-02-23
Singular or non-Fermi liquids
C.M.Varmaetal./PhysicsReports361(2002)267–417275
Itshouldberemarkedthattherightsimpleproblemisnotalwayseasytoguess.Therightsimpleproblemforliquid4Heisnotthenon-interactingBosegasbuttheweaklyinteractingBosegas(i.e.,theBogoliubovproblem[45,154]).TherightsimpleproblemfortheKondoproblem(alow-temperaturelocalFermiliquid)wasguessed[197]onlyafterthenumericalrenormalizationgroupsolutionwasobtainedbyWilson[289].Therightsimpleproblemfortwo-dimensionalinteractingdisorderedelectronsinthe“metallic”rangeofdensities(Section8inthispaper)isatpresentunknown.
ForSFLs,theproblemisdi erent:usuallyoneisinaregimeofparameterswherenosimpleproblemisastartingpoint—insomecasesthe uctuationsbetweensolutionstodi erentsimpleproblemsdeterminesthephysicalproperties,ndauFermiliquidandthewavefunctionrenormalizationZ
Landautheoryistheforerunnerofourmodernwayofthinkingaboutlow-energye ectiveHamiltoniansincomplicatedproblemsandoftherenormalizationgroup.TheformalstatementsofLandautheoryintheiroriginalformareoftensomewhatcrypticandmysterious—thisre ectsbothLandau’sstyleandhisingenuity.Weshalltakeamorepedestrianapproach.
Letusconsidertheessentialdi erencebetweennon-interactingfermionsandaninteractingFermiliquidfromasimplemicroscopicperspective.Forfreefermions,themomentumstates|k arealsoeigenstatesoftheHamiltonianwitheigenvalue
k=
2k2
:(2)
Moreover,thethermaldistributionofparticlesn0k ,isgivenbytheFermi–Diracfunctionwhere denotesthespinlabel.AtT=0,thedistributionjumpsfrom1(allstatesoccupiedwithintheFermisphere)tozero(nostatesoccupiedwithintheFermisphere)at|k|=kFandenergyequaltothechemicalpotential .ThisisillustratedinFig.4.
Agoodwayofprobingasystemistoinvestigatethespectralfunction;thespectralfunctionA(k;!)givesthedistributionofenergies!inthesystemwhenaparticlewithmomentumkisaddedorremovedfromit(rememberthatremovingaparticleexcitationbelowtheFermienergymeansthatweaddaholeexcitation).AssketchedinFig.5(a),forthenon-interactingsystem,A0(k;!)issimplya -functionpeakattheenergy k,becauseallmomentumstatesarealsoenergyeigenstates
A0(k;!)= (! ( k ))
for!¿ ;
(3)(4)
111= Im= ImG0(k;!):
kHere, issmallandpositive;itre ectsthatparticlesorholesareintroducedadiabatically,and
itistakentozeroattheendofthecalculationforthepurenon-interactingproblem.Theÿrststepofthesecondlineisjustasimplemathematicalrewritingofthedeltafunction.InthesecondlinetheGreen’sfunctionG0fornon-interactingelectronsisintroduced.Moregenerally
…… 此处隐藏:425字,全部文档内容请下载后查看。喜欢就下载吧 ……下一篇:IT专业应知应会