Singular or non-Fermi liquids(18)
时间:2025-05-01
时间:2025-05-01
Singular or non-Fermi liquids
284C.M.Varmaetal./PhysicsReports361(2002)
267–417
Fig.10.Single-particleenergy kinonedimension,intheapproximationthatthedispersionrelationislinearizedaboutkF.NotethattheFermisurfaceconsistsofjusttwopoints.Thespectrumofparticle–holeexcitationsisgivenby!(q)= (k+q) (k)=kFq=m.Low-energyparticle–holeexcitationsareonlypossibleforqsmallorforqnear2kF.
Fig.11.Phasespaceforparticle–holeexcitationspectruminonedimensioncomparedwiththesameinhigherdimensions,Fig.8.Forlinearizedsingle-particlekineticenergy k=±vF(k kF),particle–holeexcitationsareonlypossibleonlinesgoingthroughk=0andk=2kF.
perturbatively7
ZkF≈1 2g2N(0)=EF:
(24)
Thusinaperturbativecalculationofthee ectofinteractionsthebasicanalyticstructureoftheGreen’sfunctionisleftthesameasfornon-interactingfermions.ThegeneralproofofthevalidityofLandautheoryconsistsinshowingthatwhatwehaveobtainedtosecondorderingremainsvalidtoallordersing.Theoriginalproofs[4]areself-consistencyarguments—wewillconsiderthembrie yinSection2.4.TheyassumeaÿniteZintheexactsingle-particleGreen’sfunctionsande ectivelyshowthattoanyorderinperturbationtheory,thepolarizabil-ityfunctionsretaintheanalyticstructureofthenon-interactingtheory,whichinturnensuresaÿniteZ.
Inonedimension,phase-spacerestrictionsonthepossibleexcitationsarecruciallydi erent.8HeretheFermisurfaceconsistsofjusttwopointsintheone-dimensionalspaceofmomenta—seeFig.10.Asaresult,whereasind=2and3acontinuumoflow-energyexcitationswithÿniteqispossible,inonedimensionatlow-energyonlyexcitationswithsmallkork≈2kFarepossible.ThesubsequentequivalentofFig.8fortheone-dimensionalcaseistheoneshowninFig.11.Uponintegratingoverthemomentumkwithacut-o ofO(kF)thecontributionfrom
ThisquantityhasbeenpreciselyevaluatedbyGalitski[104]forthemodelofadiluteFermigascharacterizedbyascatteringlength.8
Itmightappearsurprisingthattheyarenotdi erentinanyessentialwaybetweenhigherdimensions.
7
下一篇:IT专业应知应会