Singular or non-Fermi liquids(10)
时间:2025-02-23
时间:2025-02-23
Singular or non-Fermi liquids
276C.M.Varmaetal./PhysicsReports361(2002)
267–417
Fig.4.Bare-particledistributionatT=0foragivenspindirectioninatranslationallyinvariantFermisystemwithinteractions(fullline)andwithoutinteractions(dashedline).Notethatthepositionofthediscontinuity,i.e.,theFermiwavenumberkF,isnotrenormalizedby
interactions.
Fig.5.(a).Thenon-interactingspectralfunctionA(k;!)atÿxedkasafunctionof!;(b)thespectralfunctionofsingle-electronexcitationsinaFermiliquidatÿxedkasafunctionof!.If(1= )A(k;!)isnormalizedto1,signifyingonebareparticle,theweightundertheLorentzian,i.e.,thequasiparticlepart,isZ.Asexplainedinthetext,atthesametimeZisthediscontinuityinFig.4.
thesingle-particleGreen’sfunctionG(k;!)isdeÿnedintermsofthecorrelationfunctionofparticlecreationandannihilationoperatorsinstandardtextbooks[195,4,222,168].Forourpresentpurpose,itissu cienttonotethatitisrelatedtothespectralfunctionA(k;!),whichhasaclearphysicalmeaningandwhichcanbededucedthrough-angleresolvedphotoemissionexperiments
∞
A(k;x)
G(k;!)=dx:(5)
∞A(k;!)thusisthespectralrepresentationofthecomplexfunctionG(k;!).Herewehavedeÿned
theso-calledretardedGreen’sfunctionwhichisespeciallyusefulsinceitsrealandimaginary
下一篇:IT专业应知应会