Singular or non-Fermi liquids(17)
时间:2025-02-23
时间:2025-02-23
Singular or non-Fermi liquids
C.M.Varmaetal./PhysicsReports361(2002)267–417
283
Fig.9.Thesingle-particleself-energydiagraminsecondorder.
thislimit,wecanmakeanyexcitationwithmomentumq62kF.Forÿxedbutsmallvaluesofq,themaximumexcitationenergyis!≈qvF;thisoccurswhenqisinthesamedirectionasthemainmomentumkofeachquasiparticle.Forqnear2kF,themaximumpossibleenergyis!=vF|q 2kF|.Combiningtheseresults,weobtainthesketchinFig.8(a),inwhichtheshadedareainthe!–qspaceistheregionofallowedparticle–holeexcitations.6Fromthisspectrum,onecancalculatethepolarizability,orthemagneticsusceptibility.
Thebehaviorsketchedaboveisvalidgenerallyintwoandthreedimensions(butaswewillseeinSection4,notinonedimension).Theimportantpointtorememberisthatthedensityofparticle–holeexcitationsdecreaseslinearlywith!for!smallcomparedtoqvF.WeshallseelaterthatonewayofundoingFermi-liquidtheoryistohave!~k2intwodimensionsor!~k3inthreedimensions.
WecannowuseIm (q;!)tocalculatethesingle-particleself-energytosecondorderintheinteractions.ThisisshowninFig.9wherethewigglylinedenotes (q; )whichinthepresentapproximationisjustgivenbythediagramofFig.7(a).
Fortheperturbativeevaluationofthisprocess,theintermediateparticlewithenergy–momentum(!+ );(k+q)isafreeparticle.Second-orderperturbationtheorythenyieldsanimaginarypart,oradecayrate,
2
1!
Im (k;!)=(23)=g2N(0)
Finthreedimensionsfork≈kF.Intwodimensions,thesameprocessyieldsIm (kF;!)~
!2ln(EF=!).
The!2decayrateisintimatelyrelatedtotheanalyticresult(22)forIm (q;!)exhibitedinFig.(8).Asmaybefoundintextbooks,thesamecalculationforelectron–phononinteractionsorforinteractionwithspinwavesinanantiferromagneticmetalgivesIm (kF;!)~(!=!c)3,where!cisthephononDebyefrequencyintheformerandthecharacteristiczone-boundaryspin-wavefrequencyinthelatter.
Therealpartoftheself-energymaybeobtaineddirectlyorbyKramers–Kronigtransforma-tionof(23).Itisproportionalto!.Therefore,ifthequasiparticleamplitudeZkFisevaluated
Inthepresenceoflong-rangeCoulombinteractions,inadditiontotheparticle–holeexcitationspectrumassociatedwiththescreened(andhencee ectivelyshort-ranged)interactionsonegetsacollectivemodewithaÿniteplasma
√
frequencyasq→0ind=3anda!~behaviorind=2.Theplasmamodeisahigh-frequencymodeinwhichthemotionofthelightelectronscannotbefollowedbytheheavyions:screeningisabsentinthisregimeandthelong-rangeCoulombinteractionsthengiverisetoaÿniteplasmafrequencyind=3.
6
…… 此处隐藏:348字,全部文档内容请下载后查看。喜欢就下载吧 ……下一篇:IT专业应知应会