Singular or non-Fermi liquids(20)
时间:2025-02-23
时间:2025-02-23
Singular or non-Fermi liquids
286C.M.Varmaetal./PhysicsReports361(2002)267–417
2.4.PrinciplesofthemicroscopicderivationofLandautheory
Inthissection,wewillsketchhowtheconclusionsintheprevioussectionbasedonsecond-orderperturbationcalculationaregeneralizedtoallordersinperturbationtheory.Thissectionisslightlymoretechnicalthantherest;thereadermaychoosetoskiptoSection2.6.
WefollowthemicroscopicapproachwhosefoundationswerelaidbyLandauhimselfandwhichisdiscussedindetailinexcellenttextbooks[197,208,37,4].Formorerecentmethodswiththesameconclusions,see[237,128].OuremphasiswillbeonhighlightingtheassumptionsinthetheorysothatinthenextsectionwecansummarizetheroutesbywhichtheFermi-liquidtheorymaybreakdown.Theseassumptionsareusuallynotstatedexplicitly.
Thebasicideaisthatduetokinematicconstraints,anyperturbativeprocesswithnparticle–holepairsintheintermediatestateprovidescontributionstothepolarizabilityproportionalto(!=EF)n.Therefore,thelow-energypropertiescanbecalculatedwithprocesseswiththesame“skeletal”structureasthoseinFig.7,whichhaveonlyoneparticle–holepairintheintermediatestate.Soonemayconcentrateonthemodiÿcationofthefour-leggedverticesandthesingle-particlepropagatorsduetointeractionstoallorders.Accordingly,thetheoryisformulatedintermsofthesingle-particleGreen’sfunctionG(p)andthetwo-bodyscatteringvertex
(p1;p2;p1+k;p2 k)= (p1;p2;k):
(26)
Hereandbelowweuse,forthesakeofbrevity,p,etc.todenotetheenergy–momentumfourvector(p;!)andwesuppressthespinlabels.Theequationfor isexpandedinoneofthetwoparticle–holechannelsas9
d4q(1)(1)
(p1;p2;k)= (p1;p2;k) i (p1;q;k)G(q)G(q+k) (q;p2;k);(27)
where (1)istheirreduciblepartintheparticle–holechannelinwhichEq.(27)isexpressed.Inotherwords, (1)cannotbesplitintotwopartsbycuttingtwoGreen’sfunctionlineswithtotalmomentumk.So (1)includesthecompletevertexintheother(oftencalledcross-)particle–holechannel.ThediagrammaticrepresentationofEq.(27)isshowninFig.13.Inthesimplestapproximation (1)ndautheoryassumesthat (1)hasnosingularities.10AnassumptionisnowfurthermadethatG(p)doeshaveacoherentquasiparticlepartat|p| pFand! 0:
G(p)=
Z
+Ginc;
pp(28)
Tosecondorderintheinteractionsthecorrectiontothevertexinthetwopossibleparticle–holechannelshas
beenexhibitedintheÿrsttwopartsofFig.7.10
ThetheoryhasbeengeneralizedforCoulombinteractions[208,197,4].Thegeneralresultsremainunchangedbecauseascreenedshort-rangeinteractiontakestheplaceof (1).Thisisunlikelytobetrueinthecriticalregionofametal–insulatortransition,becauseontheinsulatingside,theCoulombinteractionisunscreened.
9
…… 此处隐藏:498字,全部文档内容请下载后查看。喜欢就下载吧 ……下一篇:IT专业应知应会