北京市延庆县2015年中考一模数学试题(11)
时间:2026-01-19
时间:2026-01-19
---------4分
(3)80 200 200000 80000 ---------5分
25.证明:
(1)证明:连接OC. ∵ AB为⊙O的直径, ∴ ∠ACB = 90°.
∴ ∠ABC +∠BAC = 90°.[来源:学科网] ∵ CM是⊙O的切线, ∴ OC⊥CM.
∴ ∠ACM +∠ACO = 90°. ··················································································· 1分[来∵ CO = AO,
∴ ∠BAC =∠ACO. ∴ ∠ACM =∠ABC.···································································································· 2分 (2)解:∵ BC = CD,OB=OA,
∴ OC∥AD. 又∵ OC⊥CE,
∴CE⊥AD. --------------------------------------------------3分[
∵ ∠ACD =∠ACB = 90°,
∴ ∠AEC =∠ACD. ∴ ΔADC∽ΔACE.
ADAC
∴. ··········································································································· 4分[ ACAE
而⊙O的半径为2, ∴ AD = 4. ∴
4AC . AC3
∴············································································································ 5分[ AC3 . ·26. -----------1分 (1)(2) 连接AO、BO,如图②,
由题意可得:∠EOF=∠AOB,则∠EOA=∠FOB. 在△EOA和△FOB中,
EAO FBO
OA OB
EOA FOB
∴△EOA≌△FOB. ∴S四边形AEOF=S△OAB.
过点O作ON⊥AB,垂足为N,如图, ∵△ABC为等边三角形, ∴∠CAB=∠CBA=60°.
∵∠CAB和∠CBA的平分线交于点O ∴∠OAB=∠OBA=30°.
-----------2分
∴OB=OA=2. ∵ON⊥AB,
∴AN=NB,ON=1. ∴AN=
∴AB=2AN=2. ∴S△
OAB=AB ON=. S四边形AEOF= (3) S面积=4sin
cos
.
2
-----------3分
N
-----------4分 -----------5分
27. 解:(1)∵二次函数y x mx n的图象经过点A(﹣1,4),B(1,0) ∴
4 1 m n
0 1 m n
2
∴m=-2,n=3
∴二次函数的表达式为y x 2x 3 -----------2分 (2)y
1
x b经过点B 21分 ∴b -----------3 2-----------4分
画出图形
11
设M(m, m ),则N m, m2 2m 3 -----------5分
22
112
设MN m 2m 3 ( m ) ∴ 22
352
MN m m ∴-----------6分 22
3249
MN (m ) ∴ 416
49
∴MN的最大值为-----------7分 16
28.
解:
(1)AE∥BF,QE=QF, (2)QE=QF,
证明:如图2,延长EQ交BF于D, ∵AE∥BF, ∴∠AEQ=∠BDQ, 在△BDQ和△AEQ中
AEQ BDQ
AQE BQD AQ BQ
∴△BDQ≌△AEQ(ASA), ∴QE=QD, ∵BF⊥CP, ∴FQ是Rt△DEF斜边上的中线, ∴QE=QF=QD, 即QE=QF.
-----------4分
-----------5分