Monte Carlo calculation of the current-voltage characteristi(17)
发布时间:2021-06-08
发布时间:2021-06-08
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
forT=0.24>Tcwesee,however,thatthereisnowellde nedlimitingsolutionfor as
j→0.ThisisbecausethesystemisabovetheKosterlitz-Thoulesstemperatureandvortex
pairswillalwaysdissociateirrespectiveofj.InFig.4thefunction isshownasafunctionoftemperature.Thesolidcirclesrepresent fromtheselfconsistentEq.(19)forthe xed
currentdensityj=0.03125.ThedatashownhererepresentstheconstructionshowninFig.
3.
Theresultsfromtheselfconsistentsolutionfor areanalyzedinFig.5.Herethe lled
circlesrepresenttheexponentaIV(T)fromFig.2.Theupsidedowntrianglesrepresent
aAHNS(T)fromEq.(20)withthesolutionfromFig.3andthetrianglesarethecorre-
spondingsolutiontoEq.(21).OnecanclearlyseethattheexpressioninEq.(21),derived
byMinnhagenetal.[21],reproducestheexponentaIV(T)forT<Tc.Notehowever,itis
onlyacoincidencethatEq.(20),derivedbyAmbegoakaretal.[17],worksfortemperatures
aboveTcinthis gureasthelimiting(j→0)solutionfor1/ isnotwellde nedforthese
temperatures,asalreadydiscussedinconnectionwithFig.3b.Asthesimulationdata
aIV(T)( lledcircles)alsomatchedtheexperimentaldatainFig.1wemustconcludethat
belowTctheinterpretationaccordingtoEq.(21)isclearlythemoreappropriate.
C.LinearResistance
Wewillnowturntoourlastdeterminationoftheexponenta(T).Theresultspresented
aboveallreliedonnon-equilibriumMonteCarlosimulations,i.e.witha niteapplied
supercurrentdensityj.Wewillnowpresenttheequilibriumdeterminationforj=0basedon
nitesizescalingofMonteCarlodataforthelinearresistancegivenbytheNyquistformula
(5)togetherwithEq.(17).InFig.6wedemonstrateadatacollapseofthelinearresistance
forseverallatticesizes.FromEq.(17)weseethatthelinearresistancedatacanbe
collapsedontoasinglecurve,thusrepresentingthethermodynamiclimit,byanappropriate
choiceateachtemperatureToftheexponentaR(T).Wedothisinthefollowingway.For
agiventemperaturewe ndtheexponentaRwhichminimizestheerrorofthe tde ned
上一篇:QC七大手法培训资料(完整版)
下一篇:江苏省高等数学竞赛试题汇总