相似三角形经典练习题(附答案)(6)

时间:2025-04-03

相似三角形经典练习题(附答案)

考点: 相似三角形的判定;平行线的性质。菁优网版权所有

专题: 证明题。

分析: 根据平行线的性质可知∠AED=∠C,∠A=∠FEC,根据相似三角形的判定定理可知△ADE∽△EFC.

解答: 证明:∵DE∥BC,

∴DE∥FC,

∴∠AED=∠C.

又∵EF∥AB,

∴EF∥AD,

∴∠A=∠FEC.

∴△ADE∽△EFC.

点评: 本题考查的是平行线的性质及相似三角形的判定定理.

2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.

(1)求证:△CDF∽△BGF;

(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.

考点: 相似三角形的判定;三角形中位线定理;梯形。菁优网版权所有

专题: 几何综合题。

分析: (1)利用平行线的性质可证明△CDF∽△BGF.

(2)根据点F是BC的中点这一已知条件,可得△CDF≌△BGF,则CD=BG,只要求出BG的长即可解题.

解答: (1)证明:∵梯形ABCD,AB∥CD,

∴∠CDF=∠FGB,∠DCF=∠GBF,(2分)

∴△CDF∽△BGF.(3分)

(2)解:由(1)△CDF∽△BGF,

又F是BC的中点,BF=FC,

∴△CDF≌△BGF,

∴DF=GF,CD=BG,(6分)

∵AB∥DC∥EF,F为BC中点,

∴E为AD中点,

∴EF是△DAG的中位线,

∴2EF=AG=AB+BG.

∴BG=2EF﹣AB=2×4﹣6=2,

∴CD=BG=2cm.(8分)

点评: 本题主要考查了相似三角形的判定定理及性质,全等三角形的判定及线段的等量代换,比较复杂.

3.如图,点D,E在BC上,且FD∥AB,FE∥AC.

求证:△ABC∽△FDE.

相似三角形经典练习题(附答案)(6).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219