高考弹簧问题专题详解不含答案(4)

发布时间:2021-06-06

高考弹簧问题专题详解

第二篇临界问题

两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。“恰好分开”既可以认为已经分开,也可以认为还未分开。认为已分开,那么这两个物体间的弹力必然为零;认为未分开,那么这两个物体的速度、加速度必然相等。同时利用这两个结论,就能分析出当时弹簧所处的状态。这种临界问题又分以下两种情况:

1.仅靠弹簧弹力将两物体弹出,那么这两个物体必然是在弹簧原长时分开的。

例1.如图所示,两个木块A、B叠放在一起,B与轻弹簧相连,弹簧下端固定在水平面上,用竖直向下的力F压A,使弹簧压缩量足够大后,停止压缩,系统保持静止。这时,若突然撤去压力F,A、B将被弹出且分离。下列判断正确的是 A.木块A、B分离时,弹簧的长度恰等于原长 B.木块A、B分离时,弹簧处于压缩状态,弹力大小等于B的重力

C.木块A、B分离时,弹簧处于压缩状态,弹力大小等于A、B的总重力 D.木块A、B分离时,弹簧的长度可能大于原长

例2.如图所示,轻弹簧左端固定在竖直墙上,右端与木块B相连,木块A紧靠木块B放置,A、B与水平面间的动摩擦因数均为μ。用水平力F向左压A,使弹簧被压缩一定程度后,系统保持静止。若突然撤去水平力F,A、B向右运动,下列判断正确的是 A.A、B一定会在向右运动过程的某时刻分开

B.若A、B在向右运动过程的某时刻分开了,当时弹簧一定是原长 C.若A、B在向右运动过程的某时刻分开了,当时弹簧一定比原长短

D.若A、B在向右运动过程的某时刻分开了,当时弹簧一定比原长长

2.除了弹簧弹力,还有其它外力作用而使相互接触的两物体分离。那么两个物体分离时弹簧必然不是原长。

例3.如图所示,质量均为m=500g的木块A、B叠放在一起,轻弹簧的劲度为k=100N/m,上、下两端分别和B与水平面相连。原来系统处于静止。现用竖直向上的拉力F拉A,使它以a=2.0m/s2的加速度向上做匀加速运动。求:⑴经过多长时间A与B恰好分离?⑵上述过程中拉力F的最小值F1和最大值F2各多大?⑶刚施加拉力F瞬间A、B间压力多大?

例1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m的物体,有一水平板将物体托住,并使弹簧处于自然长度。如图7所示。现让木板由静止开始以加速度a(a<g=匀加速向下移动。求经过多长时间木板开始与物体分离。

例2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P处于静止,

P的质量m=12kg,弹簧的劲度系数k=300N/m。现在给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在t=0.2s内F是变力,在0.2s以后F是恒力,g=10m/s2,则F的最小值是,F的最大值是。

图8

高考弹簧问题专题详解

例3.如图9所示,一劲度系数为k=800N/m的轻弹簧两端各焊接着两个质量均为m=12kg的物体A、B。物体A、B和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F在上面物体A上,使物体A开始向上做匀加速运动,经0.4s物体B刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g=10m/s2,求: (1)此过程中所加外力F的最大值和最小值。 (2)此过程中外力F所做的功。

11. A、B两木块叠放在竖直轻弹簧上,如图所示,已知木块A、B质量分别为0.42 kg和0.40 kg,弹簧

2

的劲度系数k=100 N/m ,若在木块A上作用一个竖直向上的力F,使A由静止开始以0.5 m/s的加速度竖

2

直向上做匀加速运动(g=10 m/s).

(1)使木块A竖直做匀加速运动的过程中,力F的最大值; (2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了0.248 J,求这一过程F对木块做的功.

12.(2005全国理综3)(19分)如图所示,在倾角为 的光滑斜面上有两个用轻质弹簧相连接的物块A、B,它们的质量分别为mA、mB,弹簧的劲度系数为k,C为一固定挡板。系统处一静止状态,现开始用一恒力F沿斜面方向拉物块A使之向上运动,求物块B刚要离开C时物块A的加速度a和从开始到此时物块A的位移d,重力加速度为g。

第三篇:利用间谐振动的对称性:

1、一弹簧振子作简谐振动,周期为T()

A.若t时刻和t+Δt时刻振子运动位移的大小相等,方向相同,则Δt一定等于T的整数倍 B.若t时刻和t+Δt时刻振子运动速度的大小相等,方向相反,则Δt一定等于T/2的整数倍 C.若Δt=T,则在t时刻和t+Δt时刻振子运动的加速度一定相等 D.若Δt=T/2,则在t时刻和t+Δt时刻弹簧的长度一定相等

2、如图5所示,轻弹簧的一端固定在地面上,另一端与木块B相连,木块A放在木块B上,两木块质量均为m,在木块A上施有竖直向下的力F,整个装置处于静止状态.

(1)突然将力F撤去,若运动中A、B不分离,则A、B共同运动到最高点时,B对A的弹力有多大?

(2)要使A、B不分离,力F应满足什么条件?

高考弹簧问题专题详解

3、两块质量分别为m1和m2的木块,用一根劲度系数为k的轻弹簧连在一起,现在m1上施加压力F,如图14所示.为了使撤去F后m1跳起时能带起m2,则所加压力F应多大?

4、如图所示,将质量为mA 100g的平台A连结在劲度系数k 200N/m的弹簧上端,弹簧下端固定在地上,形成竖直方向的弹簧振子,在A的上方放置mB mA的物块B,使A、B一起上下振动,弹簧原子为5cm.A的厚度可忽略不计,g取10m/s2.求:

(1)当系统做小振幅简谐振动时,A的平衡位置离地面C多高? (2)当振幅为0.5cm时,B对A的最大压力有多大?

(3)为使B在振动中始终与A接触,振幅不能超过多大?

5.如图所示,木块P和轻弹簧组成的弹簧振子在光滑水平面上做简谐运动,O为平衡位置,B、C为木块到达的最左端和最右端。有一颗子弹竖直向下射入P并立即留在P中和P共同振动。下列判断正确的是 A.若子弹是在C位置射入木块的,则射入后振幅不变,周期不变 B.若子弹是在B位置射入木块的,则射入后振幅不变,周期变小 C.若子弹是在O位置射入木块的,则射入后振幅不变,周期不变

D.若子弹是在O位置射入木块的,则射入后振幅减小,周期变大

6、如图所示,轻弹簧下端固定,竖立在水平面上。其正上方A位置有一只小球。小球从静止开始下落,在B位置接触弹簧的上端,在C位置小球所受弹力大小等于重力,在D位置小球速度减小到零。小球下降阶段下列判断中正确的是 A.在B位置小球动能最大 B.在C位置小球加速度最大 B

C.从A→C位置小球重力势能的减少等于小球动能的增加

D D.从B→D位置小球重力势能的减少小于弹簧弹性势能的增加

7、如图所示,在光滑的水平面上有一弹簧振子,弹簧的劲度系数为k,开始时,振子被拉到平衡位置O的右侧某处,此时拉力为F,然后轻轻释放振子,振子从初速度为零的状态开始向左运动,经过时间t后到达平衡位置O处,此时振子的速度为v,则在这过程中,振子的平均速度为( ) A. v/2 B. F/(2kt) C. v D. F/(kt) 8、在光滑水平面上有一弹簧振子,弹簧的劲度系数为k,振子质量为M,振动的量大速度为v0.如图所示,当振子在最大位移为A的时刻把质量为m的物体轻放在其上,则(1)要保持物体和振子一起振动,二者间动摩擦因数至少多大?(2)一起振动时,二者经过平衡位置的速度多大?二者的振幅又是多大?(已知弹簧

2

弹形势能EP=kx,x为弹簧相对原长伸长量)

高考弹簧问题专题详解

9、如右图,小球自a点由静止自由下落,到b点时与弹簧接触,到c点时弹簧被压缩最短,若不计弹簧的质量和空气阻力,在小球由a到b到c的运动过程中() A.小球和弹簧机械能守恒 B.小球的重力势能随时间减小 C.小球到c点时的加速度大于g

D.到c点时小球重力势能的减少量等于弹簧弹性势能的增加量

10、如图所示,小球在竖直力F作用下将竖直弹簧压缩,若将力F撤去,小球将向上弹起并离开弹簧,直到速度变为零为止,在小球上升的过程中 A.小球的动能先增大后减小 B.小球在离开弹簧时动能最大 C.小球的动能最大时弹性势能为零 D.小球的动能减为零时,重力势能最大

11

、一轻质弹簧,上端悬挂于天花板,下端系一质量为M

的平板,处在平衡状态.一质量为m的均匀环套在弹簧外,与平板的距离为h,如图9-9所示.让环自由下落,撞击平板.已知碰后环与板以相同的速度向下运动,使弹簧伸长.

A.若碰撞时间极短,则碰撞过程中环与板的总动量守恒 B.若碰撞时间极短,则碰撞过程中环与板的总机械能守恒 C.环撞击板后,板的新的平衡位置与h的大小无关

D.在碰后板和环一起下落的过程中,它们减少的动能等于克服弹簧力所做的功 12、如图所示的装置中,木块B与水平桌面间的接触是光滑的,

子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中

A.动量守恒,机械能守恒 B.动量不守恒,机械能不守恒 C.动量守恒,机械能不守恒 D.动量不守恒,机械能守恒

13、如图所示,轻质弹簧原长L,竖直固定在地面上,质量为m的小球从距地面H高处由静止开始下落,正好落在弹簧上,使弹簧的最大压缩量为x,在下落过程中,空气阻力恒为f,则弹簧在最短时具有的弹性势能为Ep=________.

四、弹性势能问题

机械能包括动能、重力势能和弹性势能。其中弹性势能的计算式Ep

12

kx高中不要求掌握,但要求知道:2

对一根确定的弹簧,形变量越大,弹性势能越大;形变量相同时,弹性势能相同。因此关系到弹性势能的计算有以下两种常见的模式:

1.利用能量守恒定律求弹性势能。

例1、如图所示,质量分别为m和2m的A、B两个木块间用轻弹簧相连,放在光滑水平面上,A靠紧竖直墙。用水平力F将B向左压,静止后弹簧储存的弹性势能为E。若突然撤去F,那么A离开墙后,弹簧的弹性势能最大值将是多大?

高考弹簧问题专题详解不含答案(4).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219