Uncertainty Relation in Quantum Mechanics with Quantum Group(2)

发布时间:2021-06-06

We study the commutation relations, uncertainty relations and spectra of position and momentum operators within the framework of quantum group % symmetric Heisenberg algebras and their (Bargmann-) Fock representations. As an effect of the underlying noncom

couldbeinsuchawaythatnotonlygravityisquantisedbutalsothatgravitywouldfeedbacktoquantumtheorybymodifyingthecanonicalcommutationrelations.Wewillhoweverforthepresentcon neourselvestothecaseofnonrelativis-ticquantummechanics.Thestudyofsomee ectsofnoncommutativegeometryinquantummechanicswasoutlinedin[5].Herewecoveramoregeneralcaseandgivedetailsandproofs.Ourresultswillsupporttheideathatnoncommutativegeometryhasindeedthepotentialtoregulariseultravioletandeveninfrareddivergenciesinquantum eldtheories.

1.1Heisenbergalgebra

InourapproachwegeneratetheHeisenbergalgebraofndegreesoffreedombymu-tuallyadjointoperatorsaranda r,(r=1,...,n).ThisproceedingwillautomaticallysupplyuswithaHilbert(Fock-)spacerepresentationoftheHeisenbergalgebra.Inusualquantummechanicsthisisofcourseequivalenttotheuseofthehermiteangeneratorsxrandpr,(whicharethewellknownlinearcombinationsoftheformerones)andtherepresentatione.g.ontheHilbertspaceofsquareintegrablefunctions.WewillusethequantumgroupSUq(n)asa’symmetry’groupfornontrivialcommutationrelationsi.e.aslinearquantumcanonicaltransformations.TechnicallytheHeisenbergalgebraisaFunSUq(n)-comodulealgebra[6].ArbitraryHamiltonianscanbestudiedwithinourframeworkandtheynotnecessarilyhavethissymmetry.ExplicitelythecommutationrelationsofthefollowinggeneralisedbosonicHeisen-bergalgebraareconservedundertheactionofthequantumgroupSUq(n):

aiaj qajai=0

a iaj qajai=0

aia j qajai=0forforfor

2i<ji>ji=j j<i(1)(2)(3)a jaj(4)aia i q2a iai=1+(q 1)

Hereirunsfrom1tonandqisreal.Theserelationsandtheirfermioniccounter-partwerederivedintheR-matrixapproachin[6].AsIlearnedlatertheyhad rstappearedinadi erentapproach[7].Theyarerelatedtothedi erentialcalculusonquantumplanes[8]andcanalsobeunderstoodasabraidedsemidirectproductconstruction[9].Comparealsowiththedi erentapproachese.g.in[10,11,12,13].Althoughquantumgroupsdoingeneralhavemorethanonefreeparameter,nofur-therparametersenterintheabovecommutationrelations[14,15].

1.2BargmannFockrepresentation

0|0 =1andai|0 =0fori=1,...,n

2AsusualtheFockspaceisconstructedfromavector|0 with

Uncertainty Relation in Quantum Mechanics with Quantum Group(2).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219