Uncertainty Relation in Quantum Mechanics with Quantum Group(12)
发布时间:2021-06-06
发布时间:2021-06-06
We study the commutation relations, uncertainty relations and spectra of position and momentum operators within the framework of quantum group % symmetric Heisenberg algebras and their (Bargmann-) Fock representations. As an effect of the underlying noncom
Theideaistocheckwhetherthe’Cayleytransform’canbeisometricallyextended.AninverseCayleytransformthenyieldsaself-adjointextensionofx .Tothisendwecalculatetheorthogonalcomplementofthespaces:
L±i,x :=(x ±i).Dx (64)
¯x =H,thesede ciencysubspacesL⊥ Sincex isclosed,symmetricandhasD±i,xcanbewrittenas (65)L⊥±i,x :=ker(x i).Dx
¯x =H.SinceHereweusedthatx =x whichholdsbecausex isclosedandD
thereisonlyoneviandonev ithedimensionsofthesespaces,i.e.thede ciencyindicesarebothequalto1.Wecanthusde nethefollowingone-parameterfamilyofself-adjointextensions:
xsa(φ).a:=i(b+U.b)foralla=b U.b(66)
withtheisometricoperatorUde nedon(x +i).Dx ⊕Cvias
U.v:=(x i)(x +i) 1.v
and v∈(x +i).Dx =L+i,x (67)
(68)U.αvi:=αeiφv i
Hereφisafreerealparameter,labelingtheself-adjointextensions.FortheeigenvaluesonecanstaywiththeextendedCayleytransformU,calculateitseigenvalues,andaninverseM¨obiustransformthenmapsthemontotheeigenvaluesofxsa(φ).
Theanalysisforpanalogouslyleadstoaone-parameterfamilyofself-adjointextensionspsa(ψ).Onemaynowbetemptedtotryto xthechoiceoftheextensionparametersφandψbyrequiringthatxsa(φ)andpsa(ψ)bede nedonthesamedomain.Onewouldthenliketodiagonalisexsa(φ)toobtainacoordinatespacerepresentationortodiagonalisepsa(ψ)toobtainamomentumspacerepresentation.However,weknowfromsection3thatxandpcannotbeextendedtoacommondomainonwhichtheyhaveeigenvectors.
4.3Thendimensionalcase
One ndsinthendimensionalcaseessentiallythesamesituation:
Wecalculatethematrixelementsofe.g.thepositionoperatorinj-directionxjintheorthonormalbasisofthevectors:
es1,...,sn:=s1 sn(a 1)·...·(an)[s1]q!·...·[sn]q!|0 (69)
12
上一篇:2014年教育心理学试题及答案
下一篇:RJ-3.312DHP中文资料