New Version of the Rayleigh–Schrdinger Perturbation Theory(8)
时间:2026-01-17
时间:2026-01-17
ABSTRACT: It has been shown in our preceding papers that the linear dependence of the perturbation wave functions on the perturbation energies makes possible to calculate the exact perturbation energies from the values of the perturbation wave functions co
KALHOUSETAL.
FIGURE2.First-orderperturbationfunction 1forthe
groundstateoftheHe´non–HeilesHamiltonian(31,
32).
FIGURE4.Third-orderperturbationfunction 3forthe
groundstateoftheHe´non–HeilesHamiltonian(31,32).
E1,E3,...equalzero.Innumericalcalculations,theseenergiesdifferfromzerowithanaccuracyof7–9digits.Theeven-perturbationenergiesE2,E4,...,arenegative,andtheirabsolutevaluein-creasesrapidlywiththeorderoftheperturbationtheory.
ResultsinTablesIV–VIIindicatethattheabso-lutevaluesoftheperturbationenergiesEnincreasewiththeenergydifferenceoftheexcitedstateandthegroundstate.
Concludingthissection,ourmethodofsolvingtheperturbationproblemgivesgoodresultsintheallinvestigatedcasesincludingthemostdif cultHe´-non–HeilesHamiltonian.TheabsolutevaluesoftheperturbationenergiesEnincreaserapidlyforlargen.
4.Conclusions
Insummary,themethoddescribedinthispaperissimpleandef cientalternativetotheusualfor-mulationoftheperturbationtheory.Itcanbeusedforone-dimensionalaswellasmultidimensionalproblemsandfornondegenerateaswellasdegen-erateeigenvalues.Itsmainadvantagesareeasycal-culationofthelarge-orderperturbationsandthepossibilityto ndtheperturbationcorrections,evenincaseswhenonlyafewzero-orderboundstatesexist.Theanalyticandnumericalresultsfortheinvestigatedexamplesshowthatourversionoftheperturbationtheoryyieldsresultswithgoodaccu-racyandcanbeusedatlargeorders.
Thenumericalresultsshowinallinvestigatedexamplesthattheabsolutevaluesoftheperturba-tionenergiesEnincreaserapidlyforlargen.Theyalsoindicatethattheperturbationseries(4)aredivergent,asymptoticseriesinthesecases.Theyareobviouslyrelatedtodifferentasymptoticbehaviorofthewavefunctionscorrespondingtothezero-orderHamiltonianH H0andthefullHamiltonianH H0 H1forx3 .Therefore,oneshouldbeverycarefulwhentruncatingsuchperturbationse-riesatlow
orders.
FIGURE3.Second-orderperturbationfunction 2for
thegroundstateoftheHe´non–HeilesHamiltonian(31,
32).
332VOL.99,NO.4
…… 此处隐藏:162字,全部文档内容请下载后查看。喜欢就下载吧 ……下一篇:安全生活有约定微课设计