New Version of the Rayleigh–Schrdinger Perturbation Theory(2)
时间:2026-01-17
时间:2026-01-17
ABSTRACT: It has been shown in our preceding papers that the linear dependence of the perturbation wave functions on the perturbation energies makes possible to calculate the exact perturbation energies from the values of the perturbation wave functions co
KALHOUSETAL.
Wenotethat 0denotestheunperturbedwavefunctionoftheHamiltonianH0.Dependingontheprobleminquestion,itcanbetheground-stateaswellasexcited-statewavefunction.
Despitethewell-knownformulationsthatcanbefoundinanytextbookonquantummechanics,thereisonepropertyoftheperturbationtheorythathasbeennoticed[1,2]andused[3–9]onlyrecently.Ithasbeenshownthatthevalueoftheperturbationwavefunction n(x)atanarbitrarilychosenpointxdependslinearlyontheperturbationenergyEn.Thislineardependencemakesitpossibletodeter-minetheexactperturbationenergiesfromtheval-uesof n(x)fortwoarbitrarilychosentrialpertur-bationenergiesEnbysimplecalculation.Inthisway,thefunctions nwhicharenotquadraticallyintegrablecanbeusedtocalculatetheexactpertur-bationenergiesEnand,inthenextstep,thecorre-spondingexactperturbationfunctions n.
Thismethodhasafewadvantages.Incontrasttotheusualformulationoftheperturbationtheory,thismethodbasedonthecomputationof nfromEq.(6)foragivenenergyEncaneasilybepro-grammedforarbitrarylargeordersofthepertur-bationtheory.Forexample,200perturbationener-giesEnnecessaryfor ndingtheirlarge-orderbehaviourwerecalculatedin[7].Further,bysolv-ingEq.(6)numerically,boththediscreteandthecontinuouspartsoftheenergyspectrumistakenintoaccount,andtheperturbationenergiesEncanbecalculatedevenincaseswhenonlyafewboundstatesexist.Thelineardependenceof n(x)ontheenergyEnmakesitpossibletoavoidtheusualshootingmethodandreducethecomputationaltimesubstantially.Finally,wenotethatonlythewavefunctionsareneededinthismethodandnointegralshavetobecalculated.
Theaimofthispaperistoapplythismethodtoafewproblemsandtestitsnumericalproperties.
F x H0 E0 1 0 x
and
fn 1 x H0 E0 1H1 n 1 x
(8)
n 1
i 1
E
i
n i
x .(9)
ThegeneralsolutionofEq.(6)cancontainalsoatermcn 0(x)attheright-handsideofEq.(7),wherecnisanarbitraryconstant.Forthesakeofsimplic-ity,weassumecn 0here.AsitisseenfromEq.(7),theperturbationfunction n(En,x)dependsontheenergyEnwhichisnotyetknownandthepointx [x1,...,xN]inN-dimensionalspace.
Equations(7)–(9)showthatthestructureoftheperturbationfunctionsisverysimple.ItfollowsfromEq.(7)thatthefunction n(En,x)isalinearfunctionoftheenergyEn.Further,itisseenthatF(x)isafunctionindependentofn.Wenotealsothat,exceptforthecasethatEnistheexactperturbationenergy, n(En,x)isnotquadraticallyintegrableandhasnophysicalmeaning.
ThefunctionsF(x)andfn 1(x)arecalculatedfromEqs.(8)and(9)numericallywiththecondi-tionsF(xb) 0andfn 1(xb) 0,wherexbarepointsattheboundaryregionsuf cientlydistantfromthepotentialminimum.Thesameboundaryconditionsareusedforthefunction 0(x).
WenotethatthefunctionF(x)divergesintheexactcalculation,however,ithaslargebut nitevaluesinnumericalcalculations.Thefunctions n(En,x)fortheexactperturbationenergyEnarequadraticallyintegrable.Therefore,wecanassumetheyobeythecondition
n En,x F x .
(10)
2.SummaryoftheMethod
Firstwediscussanondegeneratemultidimen-sionalcase.Weassumethattheperturbationfunc-tions iandperturbationenergiesEiarealreadycomputedfori 0,...,n 1.SolutionofEq.(6)canbewrittenas
ItfollowsfromEqs.(7)and(10)thatthefunctions n(En,x)alsosatisfythecondition
n En,x fn 1 x .
(11)
Therefore,wecanneglect n(En,x)inEq.(7).TheformulafortheenergyEnthenreads
fn 1 x En .
F x
(12)
n En,x EnF x fn 1 x ,n 1,2,...,where
(7)
Thisequationcanbeusedatanarbitrarilychosenpointxinsidetheintegrationregionexceptforthe
326VOL.99,NO.4
…… 此处隐藏:1566字,全部文档内容请下载后查看。喜欢就下载吧 ……下一篇:安全生活有约定微课设计