New Version of the Rayleigh–Schrdinger Perturbation Theory(7)
时间:2026-01-17
时间:2026-01-17
ABSTRACT: It has been shown in our preceding papers that the linear dependence of the perturbation wave functions on the perturbation energies makes possible to calculate the exact perturbation energies from the values of the perturbation wave functions co
NEWVERSIONOFTHEPERTURBATIONTHEORY
0 x,y 00 x,y .(37)
1
Afterasimplebuttediouscalculation,H1 0canbeexpressedasalinearcombinationoftheeigenfunc-tionsoftheunperturbedHamiltonianH0:
H1 0
21
131/453/4y 1200 689y2
26871 507x2 e x 13/20 y.
2
2
(41)
475 01 03 .21
(38)
Higherorderperturbationenergiesandwave
functionscanbeobtainedinasimilarway.Forexample,thesecond-andthird-orderperturbationwavefunctionsequal
The rst-orderperturbationenergyequalszero:
E1 0 H1 0 0.
(39)
2
51
131/453/4 59250448263
5426185752x2 25233511680x2y2 12788016384x2y4 588128112x4
4705024896x4y2 e x 13/20 y
2
2
94848624000y2 45306655680y4 8689293184y6
Thecorrespondingeigenfunctioncanbecalculatedfromtheequation
1 H0 E0 1 E1 H1 0,
withtheresult
(40)
and
(42)
3
251
131/453/4y 267842001350803600 1402374103429392171y2
652300246187820708192 753269605832315520y4 152737767077163840y6 14661974436247424y8 63207691842935367x2 441043571586179016x2y2 183753938493178560x2y4 32367000170583936x2y6 25884928192802328x4
55488811253153616x4y2 23817226540618368x4y4 2190735460104048x6
5841961226944128x6y2 e x 13/20 y.
2
2
(43)
Thesefunctionsagreeverywellwiththenumeri-callycalculatedonesandareshowninFigures1–4.Itisseenthattheground-stateperturbationfunc-tionsgotozeroattheboundariesoftheintegrationregionx [ 11,11]andy [ 11,11].Withincreasingn,thefunctions nspreadoutfromthecentreoftheintegrationregionandtheirabsolutevaluegoesup.
Innumericalcalculations,theintegrationregionx [ 11,11],y [ 11,11]wasused.Thenumer-icalandanalyticalground-stateand rstexcitedstateperturbationenergiesareshowninTablesIV–VII.
Onlythedigitswhichagreeinthecalculationsforthepointsx [0.2,0.5]andx [0.6,0.8]areshown.Dependenceoftheresultsonthechoiceofthepointxissmall,asintheprecedingexamples.Thenumericalresultsagreewiththeanalyticoneswithanaccuracyof6–9digits.
Becauseoftheantisymmetryoftheperturbationpotential(32),theodd-orderperturbation
energies
FIGURE1.Ground-statezero-orderwavefunction 0
fortheHe´non–HeilesHamiltonian(31,32).
INTERNATIONALJOURNALOFQUANTUMCHEMISTRY331
…… 此处隐藏:266字,全部文档内容请下载后查看。喜欢就下载吧 ……下一篇:安全生活有约定微课设计