New Version of the Rayleigh–Schrdinger Perturbation Theory(3)
时间:2026-01-17
时间:2026-01-17
ABSTRACT: It has been shown in our preceding papers that the linear dependence of the perturbation wave functions on the perturbation energies makes possible to calculate the exact perturbation energies from the values of the perturbation wave functions co
NEWVERSIONOFTHEPERTURBATIONTHEORY
pointswheretheconditions(10)and(11)arenotobeyed.
IftheperturbationenergyEniscalculatedfromEq.(12),thecorrespondingperturbationfunction n(En,x)canbefoundfromEqs.(7)–(9).Morede-taileddiscussionofthemethodisgivenin[6,9].TheenergyE1computednumericallyfromtheequation
E1 x0
f0 x0 0(13)
Nowwediscussthe rst-orderperturbationcor-rectiontoadegenerateeigenvalueE0.AssumingthattheenergyE0isd0-timesdegenerateandthecorrespondingzero-orderfunction 0inEq.(6)isreplacedbythelinearcombination
j 1
a
d0
j 0 j 0,
(16)
itfollowsfromEq.(6)thatEq.(7)canbegeneral-izedas
dependsslightlyonthechoiceofthepointx0.Cal-culating 1fromEq.(7)forn 1,weobtainthe
function
f0 x0 F x f0 x F x0
1 E1,x .
0(14)
1 E1,x E1where
j 1
a
d0
j 0F j x
j 1
a
d0
j j 00f x ,(17)
j
x F j x H0 E0 1 0(18)
Itshowsthatthefunction 1calculatedinthisway
equalszeroatthepointx0:
and
j j f0 x H0 E0 1H1 0 x .
1 E1,x0 0.(15)
(19)
Therefore,theusualorthogonalitycondition,
0 1 0,isnotful lledinnumericalcalculations.Itcaneasilybeshownthatthisresultcanbeex-tendedtoallfunctions n.Asshownin[6],suchfunctionscanhaveinsomecasesmoresimpleformthantheusualperturbationfunctions.Ifnecessary,thefunctions ncanbemadeorthogonalto 0bytheusualorthogonalizationprocedure.
Therefore,thepointxusedinthecalculationoftheenergy(12)shouldbesuf cientlydistantfromthepointswherethefunction 0(x)equalszero.Ourmethodisaremarkableexampleofcalculat-ingtheperturbationenergiesEnfromthevaluesofthefunctionsF(x)andfn 1(x)paringwiththestandardformulationoftheperturbationtheory,large-ordercalculationsaresimpleinourmethod.Todeter-mineE1,thevaluesofF(x)andf0(x)atonlyonepointxaresuf cient.TodetermineEnforn 2,3,...,onlythevalueoffn 1(x)atthepointxistobecomputed.Therefore,thismethodofcalculatingEnismuchfasterthantheusualshootingmethod.Wenotethatthezero-orderfunction 0hastobefoundonlyforthestateforwhichtheperturbationcorrectionsarecalculated.Incontrasttotheusualperturbationtheory,otherzero-orderenergiesandwavefunctionsarenotneededinthecalculation.
ItisseenfromEq.(17)that 1(E1,x)dependsonE1linearlyasinthenondegeneratecase.Therefore,byanalogywiththenondegeneratecase,wecande-rivetheformulafortheperturbationenergyE1:
E1
j j 0
¥jd 1a0f0 x 0j 1a0F.(20)
j)(j)(j)
Here,f(0(x)andF(x)areknown,andE1anda0
j)
aretobefound.To ndE1anda(0,weexploitthefactthattheenergyE1isaconstantanduseEq.(20)atd0differentpointsx x1,...,xd0insidetheintegrationregion.Thesolutionoftheequations j j 0
¥jd 1a0f0 x1 0j 1a0F1 j j 0
¥jd 1a0f0 x2 0j 1a0F2 ···
(21)
j j 0
¥jd 1a0f0 xd0 0j 1a0Fd0j)
thenyieldsd0setsofthecoef cientsa(0.Thed0valuesoftheenergyE1aregivenbyEq.(20),andthecorrespondingperturbationfunctionsequal
1
j 1
a
d0
j 0 j 0.
(22)
INTERNATIONALJOURNALOFQUANTUMCHEMISTRY327
…… 此处隐藏:956字,全部文档内容请下载后查看。喜欢就下载吧 ……下一篇:安全生活有约定微课设计