New Version of the Rayleigh–Schrdinger Perturbation Theory(6)
时间:2026-01-17
时间:2026-01-17
ABSTRACT: It has been shown in our preceding papers that the linear dependence of the perturbation wave functions on the perturbation energies makes possible to calculate the exact perturbation energies from the values of the perturbation wave functions co
KALHOUSETAL.
TABLEIII_____________________________________________________________________________________________
PerturbationenergiesEnforthegroundstateoftheBarbanisHamiltonian(30);E0istheexactzero-orderenergy.*n024681012141618202224262830
numEn
anEn
2
0.1041666665 0.0322627314 0.02298880368 0.024159131 0.0326818070 0.05343610684 0.1019221649 0.2217101989 0.541404172 1.46666250 4.366576807 14.17768870 49.8757770 189.0381799 768.15366
2
5
0.104166666667...48223 0.0322627314815...114407
0.0229888036908...
4976640346266143
0.0241591313924...
2360833242959
0.0326818070580...
7223692492800012969801730008377
0.0534361068462...
124680261346275858491
0.101922164944...
122328898150072320000010935414749213048671720261 0.221710199048...493230117341091594240000004441356782637499756905980351899
0.541404172625...
667033238517271928733626515967166703
1.46666250754...
454796679596048442320958259200000000
numan*TheenergiescalculatednumericallyfromEq.(12)aredenotedasEn.TheanalyticenergiesdenotedasEnwerecalculatedfor
n 0,2,...,20.Odd-orderperturbationenergiesequalzero.
cillator.Forexample,theground-statezero-orderwavefunctionequals
03 x,y 133/451/4y 15
150
13y2 e x 13/20 y 0 x 3 y ,
2
2
00 x,y
15
13
1/43/4
5e
x2 13/20 y2
(35)
0 x 0 y .(33)
and
Analogously,orthonormalexcitedstatewavefunc-tionscorrespondingtolowquantumnumberscanbewrittenintheform
21 x,y
3/41/4
135 1 4x2 ye x 13/20 y
10
2
2
01 x,y
15 2 x 1 y .
133/451/4ye x 13/20 y
2
2
(36)
0 x 1 y ,(34)
Nowwediscusstheground-stateperturbationproblemwiththezero-orderwavefunction
330VOL.99,NO.4
下一篇:安全生活有约定微课设计