New Version of the Rayleigh–Schrdinger Perturbation Theory(5)
时间:2026-01-17
时间:2026-01-17
ABSTRACT: It has been shown in our preceding papers that the linear dependence of the perturbation wave functions on the perturbation energies makes possible to calculate the exact perturbation energies from the values of the perturbation wave functions co
NEWVERSIONOFTHEPERTURBATIONTHEORY
TABLEII______________________________________
PerturbationenergiesEnforthegroundstateoftwocoupledMorseoscillators(29);E0istheexactzero-orderenergy.
n0123456789
En
3/20.2500000 0.0696350.03903 0.03660.0920 0.6116.43 89.21550
3.3.BARBANISHAMILTONIAN
AsanotherexampleofusingourmethodwecalculatedtheperturbationenergiesforthegroundstateoftheBarbanisHamiltonian:
2 2
2222
H xx yy xy2.
(30)
bymeansofthedifferenceequationmethodsug-gestedin[11].Itisalsoseenthatthemethodcanbe
usedatlargeorders.Therefore,theseresultsarequitesatisfactory.
3.2.COUPLEDMORSEOSCILLATORSAsasecondtest,wechoseamoredif cultprob-lemwithonlyoneboundstateofthezero-orderHamiltonianwhenthestandardperturbationthe-oryyieldsthe rst-ordercorrectionE1only.TheperturbationenergieswerecalculatedforthegroundstateoftwocoupledMorseoscillators: 2 2
H 1 e x1 2 1 e x2 2
12
1 e x1 2 1 e x2 2.
(29)
Here,weusedthefrequencies x 1and y 1.ThisHamiltonianhasbeenoftenstudiedasasim-plemodelforsystemswiththeFermiresponsessuchastheCO2stretchbendresonance.PotentialinthisHamiltonianisnotboundedfrombelow.
Theground-stateperturbationenergieswerecal-culatedbothnumericallyandanalytically(seeTa-bleIII).
Inthenumericalcalculation,theintegrationre-gionx [ 11,11]andy [ 11,11]wasused.Similarlytotheprecedingexamples,onlythedigitsthatagreeinthecalculationsforthepointsx [0.2,0.5]andx [0.6,0.8]areshown.Again,theener-giesdependonthechoiceofthepointxonlylittle.ThenumericalresultsagreewithanindependentanalyticcalculationmadeinMaple[12]withanaccuracyto6–9digits.DuetotheantisymmetryoftheperturbationpotentialinEq.(30),theodd-orderperturbationenergiesE1,E3,...equalzero.´NON-HEILESHAMILTONIAN3.4.HE
Asthelasttestofourmethod,theHe´non–Heiles
Hamiltonianwasused.Theperturbationenergieswerecalculatedforthegroundstateandthe rstexcitedstateofthezero-orderHamiltonian
1 21221 2122
x yH0
xy
withtheperturbationpotential
H1 yx2 y3.
(32)(31)
Theintegrationregionx1 [ 12,20]andx2
[ 12,20]wasused.Theground-stateperturbationenergiesareshowninTableII.
Onlythedigitsthatagreeinthecalculationsforthepointsx [4,4]andx [5,6]areshown.ThevalueofE1 0.25wasveri edbyanalyticcalcula-tion.DecreasingaccuracyoftheenergiesEnwithincreasingnisduetothefactthatthefunctions nspreadwithincreasingnrapidlyandgetoutoftheintegrationregion.Theseresultsshowthat,incon-trasttothestandardperturbationtheory,ourmethodcanbeusedforcalculatinglarge-orderper-turbationenergiesevenifthereareonlyafewzero-orderboundstates.
Thefrequencies x 2, y 1.3,andtheparameter 1correspondingtoavery atandshallowpotentialminimumwereused.SimilarlytotheBar-banispotential,theperturbationpotentialisnotboundedfrombelow.
TheanalyticenergiesandwavefunctionsoftheHe´non–Heilespotentialcanbecalculatedasfol-lows.
First,weexpresstheeigenfunctionsofH0astheproductsoftheeigenfunctionsoftheharmonicos-
INTERNATIONALJOURNALOFQUANTUMCHEMISTRY329
…… 此处隐藏:1104字,全部文档内容请下载后查看。喜欢就下载吧 ……下一篇:安全生活有约定微课设计