Approximate distributed Kalman filtering in sensor networks(4)
时间:2025-03-11
时间:2025-03-11
We analyze the performance of a distributed Kalman filter proposed in recent work on distributed dynamical systems. This approach to distributed estimation is novel in that it admits a systematic analysis of its performance as various network quantities su
Determined by distributed calculationof yLS
Local KF outputs
Fig.3.Thesteady-statebehaviorofthedistributed lterisequivalenttoaglobalKalman lterwithapre lteredinput.Theperformanceanalysisofthisisbasedonquantifyinghowclosethepre lteristounity.
Now,wewanttoconsiderthetheerrorsignal
e= x yTLSyTLS...yT
T
LS,
andthetransferfunctionfrom y
toe(z)H e y(z)=H(z) PLSTPLST...PLS
T T
.Notethatthistransferfunctioniszeroatz=1bycon-struction.Furthermore,weknowthatthissystemhasthe
structureofmdecoupledsubsystems(oneforeachcompo-nentofxi).Uptoaconstantmatrixscalingdeterminedbythecovariancematrices,eachsuchsubsystemhastransferfunctionofthefollowingform
G(z)=
1N
11T (1 z 1)(I γL)n I z 1(I γL)n 1
.
Thisfollowsfromtheinner-loopLaplacianupdateopera-tion(1),andthe rst-orderdifferencingoperationinthe
outerloop.WewillfurtherdecomposethesesubsystemsbyexploitingthefactthattheLaplacianisasymmetricmatrix,andadmitsaspectraldecomposition
L=0·11T
+ λiPi
i>1
wherethePitermsareorthogonalprojectionsontomutually
orthogonalsubspacesandtheλitermsarestrictlypositiveeigenvalues(orderedfromsmallesttolargest).Recallthatthe rstterm,correspondingtothenullspaceofL,isknown
aprioribecauseofthestructureoftheLaplacianmatrix.ApplyingthisformulaforLintheaboveequation,weob-tain
(1 γλi)nG(z)=(z 1)
nPi.i>1z (1 γλi)Notethatallofthesetermsarezeroatz=1,inaccordance
withourpreviousstatementregardingHe y(z).
Wehavenowdecomposedtheerrortransferfunction(uptoablock-diagonalmatrixscaling)intoNmindepen-dentsubsystems,eachwithtrivialpole-zerostructure.Specif-ically,theyallshareacommonzeroatz=1,andeachhaveasinglepoleoftheformz=(1 γλi)n.Ourassumptionregardingγimpliesthatthelargestsuchtermis(1 γλ2)n.Thisallowsustoboundtheerrortransferfunctionasfol-lows: H(z) ≤ C(1 γλ)n(z 1)
2 e y z (1 γλ (2)2)n whereCisaconstantdeterminedbythecovariancematri-ces.
5.THEIMPACTOFTHENETWORK:TOPOLOGY,
DENSITY,ANDBANDWIDTHTheboundwehavederivedintheprevioussectionallowsustoquantifytheperformanceofthedistributedestimationschemeasafunctionofthenetworkparametersλ2,γ,andn.Asasimpleveri cationofourclaimthatthedistributedschemereducestoperfectestimationundercompleteinter-connection,wewillmakeuseofthefactthatforacompletegraph
λi=dmax+1foralli>biningthisfact,ourchoiceofγfrombefore,andtheboundfromtheprevioussection,weobtain
He y=0
foralln>1,whichimpliesthattheglobalKalman lter
performanceisachievedwithasinglemessageexchangeoneachlinkperunittime.
Ingeneral,wecanunderstandtheperformanceofthissystembythefollowingquantity:
n λ 1 2 1+d .max Asthisquantitytendstozero,theperformanceofthedis-tributedestimatorapproachesthatofacentralizedKalman
lter.Speci callywecanstudythisquantityasafunctionofthethreefactorsthatarelikelytovaryacrossreal-worldsensornetworks:topology,connectiondensity,andband-width.The rstaspectiscapturedintheeigenvaluesoftheLaplacianmatrix,andinparticularthealgebraicconnec-tivityλ2.Acomprehensiveexplanationofthisquantityis
…… 此处隐藏:1135字,全部文档内容请下载后查看。喜欢就下载吧 ……上一篇:集成电路发展史