Approximate distributed Kalman filtering in sensor networks(2)
时间:2025-03-11
时间:2025-03-11
We analyze the performance of a distributed Kalman filter proposed in recent work on distributed dynamical systems. This approach to distributed estimation is novel in that it admits a systematic analysis of its performance as various network quantities su
Ourcentralassumptionisthatthenetworkis“fasterthanthephysicalprocess”,inthesensethatforeachphys-icalupdateindext,thenetworkcarriesoutn>1messageexchangesoneachedge.Theworkin[9]presentsamech-anismformessageexchangeanddecentralizedestimationthatisequivalenttoapurelylocalKalman lterforn=0,andachievestheperformanceoftheglobalKalman lterinthelimitasnbecomeslarge.Thisresultstemsfromtheindependenceofthenoiseprocesses,whichimpliesthatitissuf cienttoperformthespatialfusionbeforethetime-propagation.Itisthussuf cientforeachsensortorunalocalKalman lter,takingasinputstheinstantaneousspa-tialleast-squaresfusionoftheinputmeasurements
1 yt)= LS(Q 1(t)
Q 1
ii(t)yi(t)
i∈V
i∈V
andtheassociatedspatially-fusedcovariance
1Q(t)=
LSQ 1
i(t)
.i∈V
Thedistributed lterproposedin[9]providesamech-anismfortrackingtheaverageoftheinverse-covariance-weightedmeasurements
¯y(t)=1 N
Q 1
i(t)yi(t)i∈V
andthetime-varyingaverage inverse-covariance
Q¯(t)=1
N
Q 1i(t).i∈V
Clearly,thesetwoquantitiesaresuf cienttoreconstruct
yLS(t)bysolvingalinearsystemofequationsateachtimet.Further,knowledgeofthenumberofnodes(available,forexample,fromadistributedminimumspanningtree)allowsoneto ndtheassociatedcovariancesignal.
Thealgorithmrequireseachnodetomaintainavec-torvariablexi(t)∈RmandamatrixvariableMi(t)∈
Rm×m.TheseareallinitializedtoQ 1 1
Thealgorithmrunateachi(0)yi(0)andQnodeisasfollows:
i(0)respectively.foreachtimet
xi←xi+Q 1yi(t) Q 1
i(t)i(t 1)yi(t 1)
Mi←Mi+Q 1t) Q 1
i(i(t 1)fork=1,2,...,n
x←x
ii+γ j∈Ni(xj xi)
M
i←Mi+γj∈Ni(Mj Mi)
endend
Itwasshownin[9]andMitrack¯y
andQ¯thatthisalgorithmmakeseachxi
respectivelyandsoeachnodecanthuslocallycomputeM 1ixiand(NMi) 1,treatingtheseasapproximationstoyLSandQLS.Thealgorithmde-scribedtracks¯y
andQ¯withzeroerrorin“steady-state”1.Thisasymptoticresultholdsforarbitrarynetworkintercon-nectionandforarbitraryn,butthetransientperformanceofthesystemdependsonthenetworktopology,connec-tiondensity,andthenumberofmessagesperunittimen(aproxyforbandwidth).
Theparameterγisastepsize,andmustbechosentoensurestabilityoftheupdatingscheme.Thisissomewhattrickyinthatstabilitycan,inprinciple,dependonthegraphstructureofthenetwork.Anecessaryandsuf cientcon-ditionforstabilityunderarbitraryinterconnectionofthesensorsisγdmax<1,wheredmaxisthemaximumnode-degreeinthenetwork.Thereisa“natural”choice
γ=
1dmax+1
whichhasthepropertythatifeverysensorisconnectedto
everyothersensor,theglobalKalman lterperformanceisrecoveredwithasinglemessageexchangeperunittime,i.e.evenwithn=1.Thus,withγasaboveandcompletein-terconnectionthisschemeisequivalenttothatofRaoandDurrant-Whyte[1].Wewillassumehereafterthatγischo-seninthisway.Thiswillonlyaffecttheconstantsenteringtheexpressionstocome,andnotanyofthequalitativere-sults.
Finally,wewillmakeuseoftheLaplacianmatrixasso-ciatedwiththegraphG.TheLaplacianisde nedasfol-lows:
Lij= 1L if(i,j)∈E,else0ii
=Lij.
j=i
Thisisasymmetricpositive-semi-de nitematrix,andthe
assumptionthatGisconnectedimpliesthatLhasexactlyonezeroeigenvalueandassociatedeigenvector1(thevec-torofallones).Thus,repeatedmultiplicationofavectorby(I γL),whereIistheN×Nidentity,driveseachcomponentofthevectortotheaverageofthecomponentsoftheinitialvector(see[6]).
NotethateachcomponentofthexiandMivariablesisupdatedindependently.Ifforanyonesuchcomponent,weconsideralltheassociatedvaluesacrossthenetworkstacked
1Here
“steady-state”meansthatboththemeasurementsandthecovari-ancematricesapproachalimitast→∞.Forexample,thisassumptionisreasonablewhenestimatingmovingobjectsthatoccasionallyhaltforsigni cantperiodsoftime.
…… 此处隐藏:1748字,全部文档内容请下载后查看。喜欢就下载吧 ……上一篇:集成电路发展史