Approximate distributed Kalman filtering in sensor networks(6)
时间:2025-03-11
时间:2025-03-11
We analyze the performance of a distributed Kalman filter proposed in recent work on distributed dynamical systems. This approach to distributed estimation is novel in that it admits a systematic analysis of its performance as various network quantities su
Typical Measurement History
432
t
ne1merus0aeM 1dna n 2oitisoP 3 4 5
6
01002003004005006007008009001000
Time Index
Fig.6.Ameasurementhistoryusedinoursimulation.Themeasurementnoiseisdeliberatelysetveryhigh,withvari-ance vetimestheamplitudeofthesignal.
True Positions and Centralized Kalman Filter1
s
etam0.5itsE dna0 snoitiso 0.5P 1
0200
4006008001000
Time Index
Fig.7.ThesimulationresultsfromthetopologyshowninFigure5.Thetrajectoryshownistheworstamongallsen-sors,inthemean-squareerrorsense.Evenwithrelativelyfewmessagesperunittime,thedistributedestimatesdifferfromthecentralizedestimatebytento ftypercent,despitetheextremelynoisymeasurements(comparethescalesoftheseplotstothescaleofFigure6).Asthenumberofmes-sagesperunittimeincreases,theperformanceofthedis-tributedestimatorimprovesdramatically.
True Positions and Centralized Kalman Filter1
s
etam0.5itsE dna0 snoitiso 0.5P 1
0200
4006008001000
Time Index
Fig.8.ThesimulationresultsfromthetopologyshowninFigure5withall“diagonal”connectionsadded.Notethattheimprovedcommunicationtopologyhassigni cantlyimprovedtheperformanceofthedistributedestimationscheme.
H bound: λ = 1
10
10
10
|Hey|
10
10
10
ω (normalized)
Fig.9.Theboundontheerrortransferfunctionforthenet-workdepictedinFigure5,inlogarithmicscale.Notethedrasticimprovementintrackinglow-frequencysignalsasnincreases.
上一篇:集成电路发展史