Approximate distributed Kalman filtering in sensor networks(3)
时间:2025-03-11
时间:2025-03-11
We analyze the performance of a distributed Kalman filter proposed in recent work on distributed dynamical systems. This approach to distributed estimation is novel in that it admits a systematic analysis of its performance as various network quantities su
inavectorv∈RN,thentheactionoftheinnerupdateloopcanbeviewedasthefollowingmultiplication:
v←(I γL)n
v.
(1)
TheinnerloopispreciselyaLaplacianupdatingscheme
fortrackingtheinstantaneousaverageofthecovariance-weightedmeasurementsandtheinverse-covariancematri-ces.Thus,theeigenvaluesoftheLaplacianmatrixdeter-minetheconvergencepropertiesoftheinnerupdateloop.Inparticular,thesmallestpositiveeigenvalueoftheLaplacian,denotedλ2,allowsustoderiveaboundontheworst-caseconvergencerate.Thisquantityisknowningraphtheoryasthealgebraicconnectivity,andisstronglytiedtoconnec-tivitypropertiesofthegraph(see[10]foracomprehensiveexposition).
4.PERFORMANCEANALYSIS
Inthissectionwewillshowatransferfunctioncharacteriz-ingtheperformanceofthedistributedestimatorinthecasewherethenoisecovariancehasreachedsteady-state,i.e.allthecovariancematricesQi(t)arehereafterassumedcon-stant,andweassumethattheupdateloopfortheMimatri-ceshasconverged.Thismayseematrivializingassumptioninthecontextofsensornetworkswhereestimatedprocessesarelikelytoexhibitnon-stationarystatistics,andsosomecommentsareinorder.
First,letusprovidesomeintuitionforthedistributedestimationscheme.Ateachtimeinstant,eachnodehasanestimateofthegloballyfusedmeasurementinputs,andthegloballyfusedcovariance.Thisallowsthesensortoimple-mentanapproximationtotheglobalKalman lter.Forsta-tionarynoise,theglobalKalman lterisjustaLinearTime-Invariant(LTI)systemparametrizedbythecovariancema-trixandtheprocessparameters.Ifthecovariancematricesreachalimit,thematricesMiconvergeexponentially(intime)totheaverageinversecovariance,andsoeachnoderapidly“discovers”thecovariancematrixassociatedwiththeglobalsteady-stateKalman lter.
Thedistributed lterisinherentlyadaptive;ifthecovari-ancematricesbeginchangingagain,approachinganothersteady-statevalue,thealgorithmautomaticallytracksthischangeand ndsthenewcovariancematrixtobeusedintheKalman lter.Thus,analysisofthesteady-statecaseisjus-ti ed,eitherforslowly-varyingerrorstatistics,orforpro-cesseswherethetime-variationofthestatisticsis“bursty”,remainingconstantforlargeperiodsoftime(relativetotheupdatetime-scaleofthenetwork).
Now,letusdenotethetransferfunctionoftheglobalsteady-stateKalman lterK(z),anm×mmatrixoftransferfunctions(determinedbyQLS);undertheassumptionsofthissection,eachsensorhasalreadycalculatedQLSandcanthusimplementthis lterlocally.Thenominalinput
tothe lterisyLS(t),buteachnodemustinsteadusethefollowinglocalestimateasinput:
M 1ixi(t)=NQLSxi(t).
SincethequantityNQLSisjustaconstantmatrix-gainforthesteady-state lter,itsuf cestoexaminethedynamicsofthelocalestimatesxi(t),andhowthesevariablesrelatetothe“desiredvalue”(NQLS) 1yLS.Inordertodoso,letus
introducethenotation andx denotingthestackedvectorsoftheyi(t)andM 1
yixi(t)vectors,i.e.
y
=
yTTT T
x
= 1,y2...yN
M 1T
1T 1 1x1,M2
x2...MTT
NxN.HerethesuperscriptTdenotestransposition.Notethatwhen
thecovariancematricesareconstantintime,thenominal
inputyLSisrelatedtothevector y
byaconstantmatrixmultiplication:
yLS=PLS y=Q LSQ 1 1
1
1Q2...QN y.Now,thelocalestimatesM 1ixiarejusttheoutputsof
thespatialaveraging lterdescribedintheprevioussection.Speci cally,theinputstothis lterarethelocalcovariancematricesandthelocalmeasurements;ingeneralthespa-tialaveraging lterisnonlinearinaninput-outputsensebe-causeoftheinputnonlinearityQ 1
i(t)yi(t)andtheoutputnonlinearityM 1ixi(t).
However,whenthecovariancematricesareconstantandtheupdateoftheMimatriceshasconverged,theoverallinput-outputbehaviorofthespatialaveraging lterislinearasamappingfromthelocalmeasurementsignalsyi(t)tothelocalestimatesignalsM 1ixi(t).Thus,thereissomeNm×Nmmatrixoftransferfunctions,callitH(z),suchthat
x(z)=H(z) y(z).Thisletsusmakeasimplebutintuitivelyusefulstatement:
Insteady-state,theperformancelossasso-ciatedwiththedistributedestimationdesignis
equivalenttopremultiplicationoftheglobalKalman lterbyalow-pass lterdeterminedbythenet-worktopologyandspeed.
ThissituationisdepictedinFigure3.Inordertoquantifytheperformanceloss,wesimplyneedtounderstandthefre-quencyresponseofthislow-pass lter.Wewilldosobycharacterizingtheerrortransferfunction,whichisahigh-pass lter.
Todoso,letusrecallthateachM 1ixitracksyLSwithzerosteady-stateerror.ThisimpliesthattheDCgainofHisjust
H(1)= PLSTPLST...PLST T
.
…… 此处隐藏:2448字,全部文档内容请下载后查看。喜欢就下载吧 ……上一篇:集成电路发展史