Approximate distributed Kalman filtering in sensor networks
时间:2025-03-10
时间:2025-03-10
We analyze the performance of a distributed Kalman filter proposed in recent work on distributed dynamical systems. This approach to distributed estimation is novel in that it admits a systematic analysis of its performance as various network quantities su
DISTRIBUTEDKALMANFILTERINGINSENSORNETWORKSWITHQUANTIFIABLE
PERFORMANCE
DemetriP.Spanos,RezaOlfati-Saber,RichardM.Murray
ControlandDynamicalSystemsMC107-81
CaliforniaInstituteofTechnology1200EastCaliforniaBlvd.Pasadena,CA91125
{demetri,olfati,murray}@cds.caltech.edu
ABSTRACT
Positions and Estimates
True Positions and Centralized Kalman Filter
0.60.40.20 0.2 0.4 0.6 0.8
200
400600Time Index
800
1000
Time Index
WeanalyzetheperformanceofadistributedKalman l-terproposedinrecentworkondistributeddynamicalsys-tems.Thisapproachtodistributedestimationisnovelinthatitadmitsasystematicanalysisofitsperformanceasvar-iousnetworkquantitiessuchasconnectiondensity,topol-ogy,andbandwidtharevaried.Ourmaincontributionisafrequency-domaincharacterizationofthedistributedesti-mator’sperformance;thisisquanti edintermsofaspecialmatrixassociatedwiththeconnectiontopologycalledthegraphLaplacian,andalsotherateofmessageexchangebe-tweenimmediateneighborsinthecommunicationnetwork.Wepresentsimulationsforanarrayofsonar-likesensorstoverifyouranalysisresults.
1.INTRODUCTION
Thepossibilityoflargedecentralizedsensornetworkshasrenewedinterestinparallelanddistributedsignalprocess-ing,especiallyasregardstrackingandestimation.Kalman ltersformthemainstayoftheseapplications,andadmitvariouslevelsofdecentralizationunderappropriateassump-tions.However,classicalworkondistributedKalman l-terstypicallyassumesperfectinstantaneouscommunicationbetweeneverynodeonthenetworkandeveryothernode.Whiletheresultingalgorithmsremainimmenselyusefulevenforpracticalnetworks,theydonotallowanystraightfor-wardanalysisofthedegradationoftheirperformancewhencommunicationislimited.
RecentworkinthecontrolandsystemscommunityhasexaminedastrategyfordynamiciterativeKalman ltering.Thisapproachimplementsadistributed lterinwhicheachnodedynamicallytrackstheinstantaneousleast-squaresfu-sionofthecurrentinputmeasurements.ThisallowsthenodestorunindependentlocalKalman ltersusingtheglob-allyfusedinput,and(asymptotically)obtaintheperformanceofacentralizedKalman lter.Thefactthatonlyinputs(not
Time Index
Positions and Estimates
Positions and Estimates
Time Index
Fig.1.TypicalbehaviorofthedistributedKalman lterasthenumberofmessageexchangesincreases.
estimates)aresharedallowsafrequency-domainanalysisoftheperformanceofthisdistributedestimationscheme.Themaincontributionofthisarticleisatransferfunc-tiondescribingtheerrorbehaviorofthedistributedKalman lterinthecaseofstationarynoiseprocesses.Themag-nitudeofthistransferfunctiongoestozeroexponentiallyasthespeedofthecommunicationnetworkrelativetothespeedoftheestimatedprocessbecomeslarge.Speci cally,wewillshowthatthefollowingquantityisparticularlyrel-evant:
n λ2 1 . dmax+1 Here,dmaxisthemaximalnode-degree,λ2isthealge-braicconnectivityofthenetwork,andnisthenumberof
neighbor-to-neighbormessageexchangesallowedperup-dateoftheestimationprocess.
Positions and Estimates
We analyze the performance of a distributed Kalman filter proposed in recent work on distributed dynamical systems. This approach to distributed estimation is novel in that it admits a systematic analysis of its performance as various network quantities su
2.BACKGROUNDANDPREVIOUSWORKDistributedanddecentralizedestimationhasattractedmuchattentioninthepast,andthereisalargeassociatedlitera-ture.TheclassicworkofRaoandDurrant-Whyte[1]presentsanapproachtodecentralizedKalman lteringwhichac-complishesgloballyoptimalperformanceinthecasewhereallsensorscancommunicatewithallothersensors.Further,thisdesign“failsgracefully”asindividualsensorsarere-movedfromthenetworkduetoitsdistributeddesign.How-ever,itisdif culttounderstandtheperformanceofthisal-gorithmwhenpoint-to-pointcommunicationbetweeneachpairofnodesisunavailable,asislikelytobethecaseinalarge-scalesensornetwork.
Muchrecentresearchefforthasbeendedicatedtoun-derstandingthenetworkingandcomputationalchallengesassociatedwithlargesensornetworkshavingonlylimitedcommunicationandroutingcapabilities.TheworkofEs-trin,Govindan,Heidemann,andKumarin[2],aswellasthatofAkyildiz,Su,Sankarasubramniam,andCayirci[3]presentexcellentsurveysofthechallengesassociatedwiththisnewtechnology.TheworkofZhao,Shin,andReich[4]addressessimilarchallengesindynamicallyfusingtheinformationcollectedbyalargenetworkofsensors,whileincorporatingthecostsassociatedwithexcessivecommuni-cationandcomputation.Thisproblemhassigni cantimpli-cationsfornetworkingprotocols;thisaspectofsensornet-worksisaddressedintheworkofHeinzelman,Kulik,andBalakrishnan[5].
Thedynamicsofcoordinationmechanismsinnetworkshasattractedmuchattentioninthecontrolandsystemscom-munity;wereferthereadertotheworksofOlfati-SaberandMurray[6],Jadbabaie,Lin,andMorse[7],andreferencesthereinforanintroductiontorecentdevelopmentsinthisarea.Theformerarticlepresentsadecentralized“diffusion”mechanismforobtainingweightedaveragesofindividualagentinputsinthefaceofdelaysandlinkloss.TheworkofMehyaretal.[8]showsthatthiscanbesuccessfullytrans-latedtoatrulyasynchronouspeer-to-peersystemoperatingonaTCP/IPnetwork.Finally,theaveragingmechanismisgeneralizedtodevelopreal-timetrackingofoptimallyfusedleast-squaresestimatesandanassociateddecentral-izedKalman lterinSpanos,Olfati-Saber,andMurray[9].
Theconvergenceperformanceofthesediffusion-baseddesignsdependsonthealgebraicconnectivityofthenet-work,whichisthesmallestpositiveeigenvalueoftheasso-ciatedLaplacianmatrix(seethearticlebyMerris[10]forgraph-theoreticfundamentalsregardingtheLaplacian).Inthecasewherecentralizedtopologyinformationisavailableapriori,theworkofXiaoandBoy …… 此处隐藏:5333字,全部文档内容请下载后查看。喜欢就下载吧 ……
上一篇:集成电路发展史