2016年北师大版中考数学知识点总结

发布时间:2021-06-05

初中数学考点总结

第一章 实数

考点一、实数的概念及分类 (3分)

1、实数的分类

正有理数

零 有限小数和无限循环小数 实数 负有理数 正无理数

无限不循环小数 负无理数 2、无理数

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

(1)开方开不尽的数,如7,2等;

(2)有特定意义的数,如圆周率π,或化简后含有π的数,如

如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意: a a,这说明三次根号内的负号可以移到根号外面。 考点四、科学记数法和近似数 (3—6分)

1、有效数字

一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法 把一个数写做 a 10的形式,其中1 a 10,n是整数,这种记数法叫做科学记数法。 考点五、实数大小的比较 (3分)

1、数轴

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。 2、实数大小比较的几种常用方法

(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。 (2)求差比较:设a、b是实数,

a b 0 a b,

n

π

+8等; 3

(3)有特定结构的数,如0.1010010001 等; (4)某些三角函数,如sin60o等

考点二、实数的倒数、相反数和绝对值 (3分)

1、相反数

实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

2、绝对值

一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数新 课 标 第 一 网

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。 考点三、平方根、算数平方根和立方根 (3—10分)

1、平方根

如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。 一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a的平方根记做“ 2、算术平方根

。 a”

a b 0 a b,

a b 0 a b

aaa

1 a b; 1 a b; 1 a b; bbb

(4)绝对值比较法:设a、b是两负实数,则a b a b。

(3)求商比较法:设a、b是两正实数,

(5)平方法:设a、b是两负实数,则a b a b。 考点六、实数的运算 (做题的基础,分值相当大)

1、加法交换律 a b b a

2、加法结合律 (a b) c a (b c)

3、乘法交换律 ab ba

4、乘法结合律 (ab)c a(bc)

5、乘法对加法的分配律 a(b c) ab ac 6、实数的运算顺序

先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

2

2

正数a的正的平方根叫做a的算术平方根,记作“a”。 正数和零的算术平方根都只有一个,零的算术平方根是零。 a(a 0) 第二章 代数式

a 0

考点一、整式的有关概念 (3分)

1、代数式

用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

2、单项式

只含有数字与字母的积的代数式叫做单项式。 a2 a ;注意a-a(a<0) a 0

3、立方根

精彩图片

热门精选

大家正在看