2016年北师大版中考数学知识点总结(12)

发布时间:2021-06-05

(1)等腰三角形的性质定理及推论:

定理:等腰三角形的两个底角相等(简称:等边对等角)

推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。 (2)等腰三角形的其他性质:

①等腰直角三角形的两个底角相等且等于45°

②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:设腰长为a,底边长为b,则

b<a 2

④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=

180 A

2

2、等腰三角形的判定

等腰三角形的判定定理及推论:

定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。

推论1:三个角都相等的三角形是等边三角形

推论2:有一个角是60°的等腰三角形是等边三角形。

4、三角形中的中位线

连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。 (2)要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。 三角形中位线定理的作用:

位置关系:可以证明两条直线平行。 数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:

结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。 结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。 结论4:三角形一条中线和与它相交的中位线互相平分。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

第十章 四边形

考点一、四边形的相关概念 (3分) 1、四边形

在同一平面内,由不在同一直线上的四条线段首尾顺次相接的图形叫做四边形。 2、凸四边形

把四边形的任一边向两方延长,如果其他个边都在延长所得直线的同一旁,这样的四边形叫做凸四边形。

3、对角线

在四边形中,连接不相邻两个顶点的线段叫做四边形的对角线。 4、四边形的不稳定性

三角形的三边如果确定后,它的形状、大小就确定了,这是三角形的稳定性。但是四边形的四边确定后,它的形状不能确定,这就是四边形所具有的不稳定性,它在生产、生活方面有着广泛的应用。

5、四边形的内角和定理及外角和定理

四边形的内角和定理:四边形的内角和等于360°。 四边形的外角和定理:四边形的外角和等于360°。

推论:多边形的内角和定理:n边形的内角和等于(n 2) 180°; 多边形的外角和定理:任意多边形的外角和等于360°。 6、多边形的对角线条数的计算公式

设多边形的边数为n,则多边形的对角线条数为

n(n 3)

。 2

精彩图片

热门精选

大家正在看