Topological anomalies from the path integral measure in supe(5)
时间:2026-01-21
时间:2026-01-21
A fully quantum version of the Witten-Olive analysis of the central charge in the N=1 Wess-Zumino model in $d=2$ with a kink solution is presented by using path integrals in superspace. We regulate the Jacobians with heat kernels in superspace, and obtain
isthenderivedbyusingtheThesupersymmetryalgebrafortheconservedchargeQ
BJLmethod.WerewriteWardidentitieswhicharederivedfrompathintegralsandwhichcontainthecovariantT timeordering,intermsofWardidentitiesattheoperatorlevelwhichcontaintheTtimeorderingsymbol.Weobtain2
α,Q β}= 2(γµ)αβP µ 2Z (γ5)αβi{Q
where
µ=P
=Z (1.9) 0µ(x),dxT
0(x)= dxζ =P 0,H
0(x).dxζ(1.10)
TheBJLmethod,unlikethesemi-classicalDiracbracket,incorporatesallthequantum µareconserved µandζe ects,inparticularsuperconformalanomalies.TheoperatorsTνquantities µ=0 µ=0, µT µζ(1.11)ν
butcontainsuperconformalanomalies
¯g¯(x)+h µ(x)=F(x)U(x) g ψψTµ
2πF(x),
h¯g
µ (x)γµ.(1.12) µ(x)γ5= µ (x)Uγµ+γµζ2π
Wederivetheseequationsfromthepathintegralformulation.Intheseequations,Tµµ(x)and(γµζµ)containonlythetermswhichexplicitlybreaksuperconformalsymmetry,asweshallshow.Thesearisefromthesuperpotential,are“soft”(theyhavelowerdimen-sionbecausetheyareproportionaltothedimensionfulg),andtherearenoanomalouscontributionstothesequantities.
Therelationsin(1.5)and(1.6)canbecombinedtogiveasimilarresultasin(1.12)
µ(x)=γµjµ(x) γµJh¯g
¯g µ(x)=ζµ(x)+hζ
24πF(x),Thesymbols(γ0)αβand(γ5)αβdenotethematrices(γ0)αγ(C 1)γβand(γ5)αγ(C 1)γβandareinourconventionsequalto iandiτ3,respectively,seeSection2.Theindicesαandβareequalto+or ,andforα=β=+one ndsthatthequantumanticommutatorhasthesameformastheclassicalrelation(1.1).
上一篇:JE1036HL2R中文资料
下一篇:论日本刑法中的占有_童伟华