Topological anomalies from the path integral measure in supe(20)
时间:2026-01-21
时间:2026-01-21
A fully quantum version of the Witten-Olive analysis of the central charge in the N=1 Wess-Zumino model in $d=2$ with a kink solution is presented by using path integrals in superspace. We regulate the Jacobians with heat kernels in superspace, and obtain
whereδsusyφ(y,θ)standsforthevariationofφ(y,θ)
δsusyφ(y,θ)=δ2(x y)Qαφ(x,θ).(5.14)
WethenapplytheBjorken-Johnson-Low(BJL)analysistoreplacetheT productbytheTproduct8
µ,α(x)φ(y,θ) + δ2(x y)Qαφ(x,θ) =0 i µ TJ(5.15)
andobtaininthelimitk0→∞theequaltimecommutator(seeappendix)
0,α(x),φ(y,θ)]δ(x0 y0)=δ2(x y)[ i[J
2π( (y)γν )β(5.18)
whereweused(4.19).Inthepathintegralframework,thisrelationisderivedbystarting νwith j(y) =Dφjν(y)eiSandconsideringthechangeofvariablescorrespondingto(local)supersymmetry
µ(x)jν(y) =δ(x y) δsusyjν(y) .i µ T J(5.19)
Thelocalvariationsoftheactionandthemeasuregivetogethertheleft-handside,justasin(5.13).TheBJLanalysisthengivesrisetothecommutator.Theoperatorsappearingherearegivenby9
ζµ(x)= µν ν (x)U( ),
2πγµ 01= 1,
ψ(x)φ(y,θ) =0.Ifonewouldkeepthe
derivativeoperatorinsidetheT-product,thisconditionisspoiled.SeetheappendixforanaccountoftheBJLprescription.9Bynotingthecompletenessof(1,γ5,γµ),thesupersymmetryvariationofthecurrentjν(y)isex-pandedas
δ jν,β(y)= 2Tµν(y)(γµ)βα α 2ζν(y)(γ5)βα α 2vν(y) β
Bymultiplyingthisrelationby ¯γρ, ¯γ5and ¯,respectively,wecanprojectoutthe3componentsaboveµbynoting ¯γ = ¯γ5 =0.Thevectorcomponentvνisshowntovanishon-shellbyusingsafe(i.e.,¯(x)γµδSanomaly-free)relationssuchasψ¯(x)=0,exceptforthetermexplicitlywrittenδψ
in(5.18).¯gψ(x)φ(y,θ) .Itshouldbereplacedby µ Th2πγµ
上一篇:JE1036HL2R中文资料
下一篇:论日本刑法中的占有_童伟华