基于DSP生物医学信号处理论文(9)
时间:2026-01-27
时间:2026-01-27
的方法,它是根据全部过去和当前的观测数据来估计信号的当前值,维纳滤波器要求解著名的WienerHopf方程,它是期望存在情况下的线性最优滤波
器。卡尔曼(Kalman)从状态空间模型出发,提出了基于状态空间模型的线性最优滤波器即卡尔曼滤波器。Kalman滤波理论是W iener滤波理论的发展,它最早用于随机过程的参数估计,后来很快在各最优滤波和最优控制问题中得到了广泛的应用。值得提出的Kalman滤波器提供了推导称作递推最小二乘滤波器的一大类自适应滤波器的统一框架,实际上广泛使用的最小二乘算法即是kalman算法的一个特例。
3.4 混沌和分形方法
混沌和分形理论是一种非线性动力学课题,混沌系统的最大特点是初值敏感性和参数敏感性,即所谓的蝴蝶效应。混沌学研究的是无序中的有序,许多现象即使遵循严格的确定性规则,但大体上仍是无法预测的,比如大气中的湍流、人心脏的跳动等。混沌事件在不同的时间标度下表现出相似的变化模式,与分形在空间标度下表现十分相象,但混沌主要讨论非线性动力系统的不稳、发散的过程。混沌与分形在脑电信号处理的应用中尤为引人注目。自本世纪二十年代发现脑电信号以来,人们对其已进行了大量的研究,然而由于脑电信号的随机性很强,始终难以找到其规律性,无法使脑电信号成为认识大脑思维以及某些属性的有用信息。究其原因是脑电信号是神经元动作电位的无规则的脑电活动,实际上只由少数独立的动力学变量控制着,因此可以用研究混沌动力学的方法来研究人脑的功能。
3.5 小波分析方法
小波分析是传统傅里叶变换的继承和发展。由于小波的多分辨分析(Multi-resolution Analysis)具有良好的空间域和频率域局部化特性,对高频采用逐渐精细的时域或空域取样步长,可以聚焦到分析对象的任意细节,从这个意义上讲,它已被人们誉为数学显微镜。目前,在心电数据的压缩、生物医学信号的信噪分离、QRS波的综合检测、脑电图EEG的时频分析、信号的提取与奇异性检测等方面有了广泛的应用。
下一篇:思修考题及答案