三角形的心(3)

时间:2026-01-20

三角形的三条高必交于一点

求证:CF⊥AB

证明:连接DE ∵∠ADB=∠AEB=90°,且在AB同旁,

∴A、B、D、E四点共圆 ∴∠ADE=∠ABE (同弧上的圆周角相等) ∵∠EAO=∠DAC ∠AEO=∠ADC =90°

∴△AEO∽△ADC ∴AE/AD=AO/AC 即AE/AO=AD/AC

∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE

又∵∠ABE+∠BAC=90° ∴∠ACF+∠BAC=90° ∴CF⊥AB

三角形的垂心的性质

1.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外

2.三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心

3. 垂心O关于三边的对称点,均在△ABC的外接圆上

4.△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AO·OD=BO·OE=CO·OF

5. H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。

6.△ABC,△ABO,△BCO,△ACO的外接圆是等圆。

7.在非直角三角形中,过O的直线交AB、AC所在直线分别于P、Q,则 AB/AP·tanB+ AC/AQ·tanC=tanA+tanB+tanC

8.三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。

9.设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。

10.锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。

11.锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。

12.西姆松(Simson)定理(西姆松线)

从一点向三角形的三边所引垂线的垂足共线的重要条件是该点落在三角形的外接圆上

编辑本段五、三角形的旁心

三角形的一条内角平分线与另两个内角的外角平分线相交于一点,是旁切圆的圆心,称为旁心。

三角形的心(3).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:4.9 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:19元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219