高数答案下册(15)
时间:2025-04-20
时间:2025-04-20
111
解得b0 ,b1 ,b2
8122
11 1
得特解y x2 x2 x ex
122 8
11 1
所求通解为y c1 c2x ex x4 x3 x2 ex
122 8
4)y 2y 2y exsinx
1,Pl 0 Pn x 1 w 1
r2 2r 2 0
r1 1 i i 是特征方程的根
Y ex c1cosx c2sinx 设y xex a0cosx b0sinx
1
解得a0 ,b0 0
21
特解y xexcosx
2
所求通解为y ex c1cosx c2sinx
1x
xecosx 2
x0
2.设函数f x 连续,且满足f x ex t x f t dt,求f x . 解:f x =e tf t dt x f t dt
x
x
x
两边对x求导,得f x ex x f x f t dt xf x
x
即f x ex f t dt (1)
x
上式两边对x求导,得f x ex f x 即f x f x ex 由题设f 0 1 再由(1)式得f 0 1
设y f x ,则y y ex求满足初始条件yx 0 1,y x 0 1的特解
上一篇:《国际私法学》第13章在线测试
下一篇:盖梁钢模板设计及受力分析