等腰三角形讲义1(11)
发布时间:2021-06-07
发布时间:2021-06-07
讲义
(2)等腰三角形的一个外角为100°,求该等腰三角形的顶角。
3、等腰三角形一腰上的中线将等腰三角形的周长分成8cm和10cm的两部分,求该等腰三角形的各边长。
4、 如图2所示,△ABC和△BDE都是等边三角形。
图2 求证:AE=CD。
5、 如图3所示,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是点E、F,且BF=CE。判断△ABC的形状并证明。
图3
6、“有两边相等的两个直角三角形全等”这个命题对与否,甲、乙、丙三位同学给出了如下论断:
甲:正确。因为若两边都是直角边,则用(SAS)全等识别法就可以证它们全等。 乙:正确。因为若其中一边是直角边,另一边是斜边,则可用(HL)定理证全等。 丙:不正确。若一个三角形较长的直角边与另一三角形斜边相等,较短的直角边与另一三角形较长的直角边相等,则显而易见两个三角形不全等。 请你就这三个同学的见解发表自己的意见。
7、如图所示,是城市部分街道示意图,AB=BC=AC,CD=CE=DE,A、B、C、D、E、F、G为“公共汽车”停靠点,“甲公共汽车”从A站出发,按照A、H、G、D、E、C、F的顺序到达F站,“乙公共汽车”从B站出发,沿B、F、H、E、D、C、G的顺序到达G站。如果甲、乙分别同时从A、B站出发,在各站耽误的时间相同,两车速度也一样,试问哪一辆公共汽车先到达指定站?为什么?
答案与解析:
上一篇:科技文献检索论文
下一篇:办公室要挂什么字画,常见问题解答