等腰三角形讲义1
发布时间:2021-06-07
发布时间:2021-06-07
讲义
等腰三角形
撰稿:徐长明 审稿:张扬 责编:孙景艳
一、 目标认知 学习目标:
通过观察发现等腰三角形的性质;掌握等腰三角形的识别方法,会用等腰三角形的性质进行简单的计算和证明;理解等腰三角形与等边三角形的相互关系;能够利用等腰三角形的识别方法判断等腰三角形;掌握等边三角形的特征和识别方法;掌握一般文字命题的解题方法
重点:
等腰三角形的性质与判定。
难点:
比较复杂图形、题目的推理证明
二、 知识要点梳理
知识点一:等腰三角形、腰、底边
有两边相等的三角形叫等腰三角形,其中相等的两条边叫腰,第三条边叫底边,两腰的夹角叫顶角,底边和腰的夹角叫底角
如图所示,在△ABC中,AB=AC,则它叫等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.
知识点二:等腰三角形的性质
1、性质1:等腰三角形的两个底角相等(简称“等边对等角”).
性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).
2、这两个性质证明如下:
在△ABC中,AB=AC,如图所示.
讲义
作底边BC的高AD,则有
∴ Rt△ABD≌Rt△ACD.
∴ ∠B=∠C,∠1=∠2.BD=CD. 于是性质1、性质2均得证. 3、说明:
(1)①等腰三角形的性质1用符号表示为:∵AB=AC,∴∠B=∠C;
②性质1是等腰三角形的一条重要(主要)性质,也是今后我们证明角相等的又一个重要依据.
(2)①性质2实质包含三条性质,符号表示为:∵ AB=AC,AD⊥BC,∠1=∠2,∴ BD=CD;
或∵ AB=AC,BD=CD,∠l=∠2,∴ AD⊥BC.
②性质2的用途更为广泛,可以用来证明线段相等,角相等,垂直关系等. (3)等腰三角形是轴对称图形,底边上高(顶角平分线或底边中线)所在直线是它的对称轴,通常情
况只有一条对称轴.
知识点三:等腰三角形的判定定理
1、定理内容及证明
如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”),如图所示.
证明:在△ABC中,∠B=∠C,作AD⊥BC于D.则
所以△ABD≌△ACD(AAS). 所以,AB=AC. 2、 注意:
①本定理的符号表示为:在△ABC中,∵∠B=∠C,∴AB=AC. ②本定理可以判定一个三角形是等腰三角形,同时也是今后证明两条线段相等的重要依据.
另外,等腰三角形的性质和判定条件和结论正好相反,要注意区分,不要混淆.
知识点四:等边三角形
1、等边三角形定义:三边都相等的三角形叫等边三角形
上一篇:科技文献检索论文
下一篇:办公室要挂什么字画,常见问题解答