感悟数学思想,积累数学活动经验(3)
发布时间:2021-06-07
发布时间:2021-06-07
积累数学活动经验
此题目老师们似乎也很熟悉,有人把它称为“鸡兔同笼”的变型。这是在过去的奥数培训中是不可缺少的训练内容。今天的《课标》中又增加了这样的案例,为什么?该案例的数学教育价值何在?面对着同样的教学内容,今天该怎样进行教学?我们不妨将两种教学方法做一个比较。
过去教学此内容教师通常采用假设法,一开始就将自己明白的道理讲给学生,比如“我们把所有的椅子都假设成有三条腿计算时,求出来的就是四条腿的椅子数;我们再把所有的椅子都假设成有四条腿计算时,求出来的就是三条腿的凳子数;”接着一下子就把算式给出来了。
(60-16×3)÷(4-3)=12(四条腿的椅子数)
(60×4-60)÷(4-3)=4(三条腿的凳子数)
学生死记硬背公式,照猫画虎完成任务,没有经历公式数学化的学习过程。这样的教学事实上正像东北师大史宁中校长所说“老师讲课不能太聪明了,老师虽然知道结果,但要引发学生思考。教师一下子把算式给出来了,学生还探讨什么?”在这样的课堂里学生已经没有了探索的空间。《课标》教学建议中让学生在解决问题的过程中“感悟数学思想,积累数学活动经验”在此已经成为了一句空话!
我们一起来看看《课标》在案例的解读中给出了怎样的建议?这样的教学又会给学生继续学习数学带来怎样的后劲儿?
教师首先引导学生在对题目理解的基础上进行观察与猜想,并进行大胆尝试,让每一位学生亲自做一做,运用尝试的方法探索规律,得出结果。并记录计算的过程,引发新的思考。
如:
椅子数 凳子数 腿的总数
16 0 4×16=64
15 1 4×15+3×1=63
14 2 4×14+3×2=62
启发学生观察,“每减少一个椅子就要增加一个凳子,腿的总数就要减少4-3=1。” 如果继续尝试下去会有怎样的情况发生?学生带着观察结果,继续探究
13 3 4×13+3×3=61
12 4 4×12+3×4=60
至此得到椅子数12,凳子数4时,腿数恰好为60。通过引导学观察发现:腿的总
上一篇:如何提高数学复习课的有效性
下一篇:医疗废物管理培训试题(附答案)