Genetic algorithms using multi-objectives(5)
发布时间:2021-06-07
发布时间:2021-06-07
We are interested in a job-shop scheduling problem corresponding to an industrial problem. Gantt diagram’s optimization can be considered as an NP-difficult problem. Determining an optimal solution is almost impossible, but trying to improve the current s
A.Cardonetal./RoboticsandAutonomousSystems33(2000)179–190183
isavectorofnrealvaluescomingfromobjectivefunctions,xisavectorofnvariablesofdecisionandX={x|x∈Rm,gk(x) 0,
k=1,...,m,andx∈S}
(3)
isasetofpossiblesolutions.gkisarealfunctionvaluerepresentingmthekthconstraintandSisasubsetofRrepresentingalltheotherformsofconstraints.Theidealsolutiontosuchaproblemisapointwhereeachobjectivefunctioncorrespondstothebest(minimum)possiblevalue.Theidealsolutioninmostcases,doesnotexistinviewofcontradictoryobjectivefunctionsandhencecompromiseshavetobemade.Adiffer-entconceptofoptimalityhastobeintroduced.Solv-inganMOPgenerallyrequirestheidenti cationofParetooptimalsolutions[33],aconceptintroducedbyV.Pareto,aprominentItalianeconomistattheendofthelastcentury.AsolutionissaidtobeParetoopti-mal,ornondominated,ifstartingfromthatpointinthedesignspace,thevalueofanyoftheobjectivefunctionscannotbeimprovedwithoutdeterioratingatleastoneoftheothers.AllpotentialsolutionstotheMOPcanthusbeclassi edintodominatedandnon-dominated(Paretooptimal)solutions,andthesetofnondominatedsolutionstoanMOPiscalledParetofront.The rstandmostimportantstepinsolvinganMOPisto ndthissetorarepresentativesubset.Af-terwardsthedecisionmaker’spreferencemaybeap-pliedtochoosethebestcompromisesolutionfromthegeneratedset.Thenaturalorderingofvectorval-uedquantitiesisbasicforParetooptimality.Tode nethenotionofdomination,letf=(fg=(g)betworeal-valuedvectors1,...,offnn)and1,...,gmele-ments:fispartiallysmallerthangif: i∈1,...,nand k∈1,...,m,fg,wei≤saygkand i|fthatfdominatesi≤gk,wenotef<pg.Iff<pg.Con-sequently,afeasiblesolutionx issaidtobeaParetooptimaloftheproblemifandonlyifanotherx∈Xdoesnotexistsuchthatf(x)<pf(x ).6.DevelopmentofParetooptimalsolutionsTwodifferentstrategiesareeffectiveingeneratingParetooptimalsolutions[12,16].Inthe rststrategy,anappropriatescalaroptimizationproblem(SOP)[42]isset-upinparametricform,sothatthesolutiontothe
SOPwithgivenvaluesoftheparameters,undercer-tainconditions,belongstotheParetofront;changingtheparametersoftheSOPleadsthesolutiontomoveonthefront.Inthesecondone,theMOPissolvedwithadirectapproachusingthedominancecriteria,sothatasetofParetooptimalsolutionsisdevelopedsimultaneously.Themainadvantageofthe rststrat-egyisthatSOPsaregenerally,verywell-studiedprob-lemsandmanyef cientmethodsareavailabletosolvethem.
6.1.EquivalentSOP1:TheweightingapproachFollowingtheweightingapproach[16],theMOP[42]ismadetocorrespondtothefollowingparametrizedSOP:P(w):minwT
f nx∈X
(x)=
wjfj(x),(4)
j=1
where
w∈W=
w|w∈Rn,wj(x) 0,
n j=1,...,nand
w
j=1j=1
,
(5)
thecorrespondencebetweentheMOPandtheSOPissubjecttosomerules.Ifx0isanoptimalsolutionofP(w0),thenitisalsoParetooptimalifoneofthetwofollowing0conditionsisveri ed:
xistheuniqueoptimalsolutiontoP(w0w0);isstrictlypositive.
ThisimpliesthatatleastsomeParetooptimalso-lutionscanbegeneratedbysolvingP(w)forsomeproperlychosenw,withoutanyhypothesisonthecon-vexityofXandf(X).Instead,someconvexityhy-pothesesareanecessitycondition.Therefore,ifbothXandf(X)areconvex,thenforanygivenParetoop-timalsolution,x ,itispossibleto ndaweightvectorw,notnecessarilyunique,suchthatx isasolutiontoP(w).Therefore,whentheseconvexityassumptionsareveri ed,allParetooptimalsolutionscan,inthe-ory,befoundbyvaryingwandsolvingP(w),whileiftheyarenotveri ed,someParetooptimalsolutionsmayneverbediscoveredbythisprocedure.
上一篇:简单的excel表格制作