Genetic algorithms using multi-objectives(7)

发布时间:2021-06-07

We are interested in a job-shop scheduling problem corresponding to an industrial problem. Gantt diagram’s optimization can be considered as an NP-difficult problem. Determining an optimal solution is almost impossible, but trying to improve the current s

A.Cardonetal./RoboticsandAutonomousSystems33(2000)179–190185

Ontheotherhand,thestaticmodeldoesnotin-cludethepossibleinteractionbetweentheworkshopandtheenvironmentsuchasastrike,amachinefailure,etc.

Inthestaticmodel,theplacingobtainedgivesasolutioncorrespondingtothescheduleofalljobs.But,bynegotiations,theschedulecanbebuiltstepbystep.Forexample,ifajobarrivestoosoon,thedelaycorrespondingtothetardinessincreases.Therefore,ifwecanchangethescheduleduringthecalculationprocess,wecanimprovethetardiness.Itisoneofoureconomicfunctions.

7.ActionsontheGanttdiagram

TheJSSPdoesnotadmitacomputablesolution,sotheuseofmulti-agentsystemsforthesolvingofsuchaproblemseemsreasonable[23].Multi-agentsystemresearchisconcernedwiththebehaviorofasetofagentsthatcooperateinordertosolveaproblem[31].Inamulti-agentsystem(MAS)[11],theagentsareseenaslittleproblemsolversthatcooperativelyworkinordertosolveaproblem[58]farbeyondtheirin-dividualabilities[13].Here,weconsideranagentasanentitywithgoals,actionstoaccomplishandareasofknowledge,whichissituatedinitsenvironment[56].Therefore,becauseoftheknowledgeofagents,rulesofactions,etc.,theMASwillhave,forprinci-palobjective,togroupagentshavingsimilarbehavior[49]toelaboratestrategiestothejobslevel,jobsofjobs,machines,machinesofmachines,etc.Indeed,theproblemofcon ictsbetweenagentsisamajorconcerninMASresearch[4,30–32].TheobjectiveoftheMASistoimprovetheGanttdiagram[35,36],thereforeitleadsustoestablishthenotionofgroupcorrespondingtoelementaryentitieshavingcom-mongrindsandphysicalsameness(samecapacityofmachine,etc.)orinterdependence.

WewillusethenotionofzonefortheroundupofentitiesontheGanttdiagram,whilewewillspeakaboutthenotionofgroupfortheroundupofentitiesofsimilarorclosenature.Sinceagentshavetoin-terveneongroupsandelementaryentities,theMASwillthenbecomposedofmicro-andmeta-agents.Itisthereforeimportantforthisevolution,tointroduceagentshavinganevolvingcharacter:themeta-agentsofevolution.Thesemeta-agents’functionwillbetomakethisorganizationevolvebymeansofa

geneticalgorithmestablishingasexualreproductionofagents.Itisinterestingtonotethat,traditionally,agentsonlyclonethemselves.Buthere,weuseage-neticalgorithmforthephysicalevolutionoftheagents[28,29].Inthecourseoftheevolution,differentagentgranularitiesappear.Wehavethereforemicroandmeta-agentsthataregoingtointervene,accordingtotheirgranularity,onanentityoragroup,bypassingthroughintermediatelevels.Thus,agentshavingameta-knowledgearegoingtobeabletointerveneonthemacro-entities(groups)aswellasonsomezonesoftheGanttdiagram.Thus,thereisadistributedagentsystembeingabletomutateandhostingagentsabletoachieveacrossoverbasedreproductionbetweenthem.

8.Acontractnetbasedapproach

Thecontractnetisaprotocolfortheresolutionofdistributedproblem,de nedbySmith[48].Themainobjectiveofthisprotocolbeingthenegotiation,itpro-ceedsbyallocationoftaskstoasetofproblemsolversandusestheconceptofnegotiationtograntcontracts.Thebasicarchitecturecontainsnodeshavingachiefandcarryingroles[7].8.1.Thecontract-netprocotol

Contract-netbasedsystemsrepresentaconceptthatcanbeusedtoestablishmechanismsofcooper-ationbetweenagents[6].Acontractnetconsistsofanumberofnodesthatarerepresentedbyindivid-ualagents.Byanalogytoasalesession,suspendedsub-tasksareopenlyproposedtoauctionstowhicheachnodecanreplyaccordingtotheinterestthatithasforthissub-task.Thestageoftaskattributionrep-resentsaprocessinwhichallthenodes(agents)areassociated.Theideaistousetheavailableresourcesandtheexistingknowledgeofagentsasef cientlyaspossible[51];thatistosaybyallocationofonesub-tasktotheagentwhichisthemostapttooperateatagivenmoment.Thecontract-netprotocolformstheskeletonofoursystem.Itisde nedbyalan-guagebetweenthenodesthatcanbeunderstoodbythesetofagents.Thecommunicationbetweenagentsisalwaysbasedonthenotionofan“acceptancemessage”.Thisspeci cityde nestheexactroleofanagent.

Genetic algorithms using multi-objectives(7).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219