相似三角形的判定及有关性质(12)
发布时间:2021-06-07
发布时间:2021-06-07
∵ED∥AC,∴∠EDA=∠DAC. ∴∠EDA=∠DBC,∴△ADE∽△CBD. ∴DE∶BD=AE∶CD. ∴DE·DC=AE·BD.
10.(10分)如图,△ABC中,AB=AC,∠BAC=90°,111AE=3,BD=3,点F在BC上,且CF=3.求证: (1)EF⊥BC; (2)∠ADE=∠EBC.
证明 设AB=AC=3a,则AE=BD=a,CF2a. CE2a2CF2a2(1)CB==3,CA3a=3.
2a
又∠C为公共角,故△BAC∽△EFC,由∠BAC=90°. ∴∠EFC=90°,∴EF⊥BC. (2)由(1)得EF=2a,
AEa2AD2a2故EF2BF2
2a22aAEAD
∴EFFB∵∠DAE=∠BFE=90°, ∴△ADE∽△FBE, ∴∠ADE=∠EBC.
上一篇:电视监控系统入门教材(6)
下一篇:各类资质证书挂靠协议(百度)