IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL.. NO., 1 Nonparam(3)
发布时间:2021-06-06
发布时间:2021-06-06
Abstract — We propose a nonparametric statistical snake technique that is based on the minimization of the stochastic complexity (minimum description length principle). The probability distributions of the gray levels in the different regions of the image
0}[25],[26],[27],[28],[29],[30],[12],[31].Thiscontourmodelallowstosegmenttheimageintworegions(i.e.R=2)notthenecessarilynumberofsimplynatsrequiredconnected.tocodeForsuchthecontourcontourmodels,canbeapproximatedby[16]
LSC=log(8)|Γ|,
(7)
where|Γ|isthelengthinpixelunitsofthecontour.
Foranuniqueandsimplyconnectedobjecttosegmentintheimage,itcanbeadvantageoustoconsiderpolygonalcontourmodelsofthestochastic[10],[15].Itcomplexityhasbeenshowncanlead[15]tothatef cienttheminimizationtechniquewithoutgrayleveltuning uctuationsparameterfollowintheaparametricoptimizedprobabilitycriterionwhendensitythefunction(pdf)thatbelongstotheexponentialfamilyandthatisadaptedhasbeentogeneralizedthe uctuationstomultiregionpresentinthesnakeimage.inThis[32]approachandthenumberofnatsneededtocodesuchamultiregionpolygonalcontourcanbeapproximatedby
PC=nlogN+(n+1)logp+p[2log(2e)+log(m
xwherem x(respectivelym y)isthemeanvalueofhorizontalm y)](8)
(resp.vertical)distancesbetweenadjacentnodes,nisthenumberandpitsofnumberEulerianofgraphssegments.
ofthemultiregionpolygonalsnakecontourOfcoursemodelsthissuchapproachassplinecoulddescriptorsbegeneralizedforexampletoother[14]orsakemultiregionofsimplicity,level,setthistechniquespaperfocuses[33],[34].onlevelHowever,setandforpolygonalsnakesforthesegmentationintworegions.Themoreknowngeneralbutarbitrarycaseofnumbermultiregionofregionspolygonalwillbealsosnakesconsideredwithaasanillustration.E.Optimizationstrategy
theThestochasticsegmentationcomplexityofthe image.ThisiscriterionobtaineddependsbyminimizingonthecontourΓ(i.e.,theparameterofinterest)andontheqparametersdistributionajthatareintroducedforthedescriptionoftheandqoftheprobabilitiesstepfunction)Pu.canThesebeparametersobtainedby(Γminimizing,a1,...,aq .Forthatpurpose,Γisestimatedbyminimizing with xedaj.Then,theparametersajandqaredeterminedbyminimizingiteratedifnecessary.
forthegivenvalueofΓ,andtheprocessis1)Levelsetcontourestimation:Inthissubsection,theimplementationoftheminimizationalongΓisdescribed.Thistechniquerefertopublishedisstandardworksinlevelforfurthersetimplementation,details[26],[31],thus[16].weTheequation φ(x,yevolution)
isgiven[26]bythepartialdifferentialequation3
itis
thesumof3termsF Γ.S(s(x,y))=
AccordingtoEq.1,S
Γ
andFCLS(s(x,y))=
LSC
N
insteadof(q 1)log
√
| φ|
.Usingtheresults
in[16],onecanshowFS(s(x,y))=
thattheexpressionforFS(s(x,y))is
qj=1{H(n1(j)) H(nH2(j))
+ (n1(j))(10) n2(j)[Rj(s(x,y)) n2(j)]
,whereH(z)= zlog(z)andnu(j)=
Nu(j)
上一篇:岩石力学 松散岩体的围岩压力计算
下一篇:社会实践报告之市场研究调查