IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL.. NO., 1 Nonparam
发布时间:2021-06-06
发布时间:2021-06-06
Abstract — We propose a nonparametric statistical snake technique that is based on the minimization of the stochastic complexity (minimum description length principle). The probability distributions of the gray levels in the different regions of the image
IEEETRANSACTIONSONIMAGEPROCESSING,VOL.??.NO.??,????1
Nonparametricstatisticalsnakebasedonthe
MinimumStochasticComplexity
PascalMARTIN,PhilippeREFREGIER,Fr´ed´ericGALLANDandFr´ed´ericGUERAULT
EDICS:SEGM,NOIS
niqueAbstractplexitythat—isWebasedproposeontheanonparametricminimizationofstatisticalthestochasticsnaketech-com-distributions(minimumdescriptionlengthprinciple).Theprobability
imagearearedescribedofthegraywithlevelsinthedifferentregionsoftheaestimated.Thesegmentationstepfunctionsisthusobtainedwithparametersbyminimizingthatthecriteriontypesuser.ef ciencyofimagesWethatillustratedoesnotincludeanyparametertobetunedbywithleveltherobustnesssetandofthistechniqueonvariousparametricofstatisticalthisapproachtechniques.
isalsopolygonalanalyzedcontourincomparisonmodels.withTheset,Indexsnakes,Termsminimum—Imagedescriptionsegmentation,lengthstochasticprinciple.
complexity,levelA
I.INTRODUCTION
Nimportantgoalofcomputationalvisionandimageobjectsprocessingfromvariousistotypesautomaticallyofimages.recoverOverthetheyears,shapemanyofapproacheshavebeendevelopedtoreachthisgoal.Inthispaper,contourswe(snakes).
focusonthesegmentationofobjectsusingactiveafunctionThe rstinsnakesorder[1]tomoveweredriventhemtowardsbythedesiredminimizationfeatures,ofusuallyedges.Theseapproachesareedgebasedinthesensethatarewelltheinformationadaptedtoausedcertainisclassstrictlyofproblems,alongtheboundary.buttheycanTheyfailinthepresenceofstrongnoisealthoughseveralimprovementsandlimitationsreformulations[2][3](andhavereferencesbeenproposedtherein).toAnotherovercomestrategytheseconsistsinconsideringnotonlytheedges,butalsotheinnerand[6],[7],theouter[8].
regionsde nedbytheactivecontour[4],[5],toInminimizetheregion-basedacriterionapproaches,thatisthethesumcontouroftwoistermsdeformed[9],[10],[11],[12]:theexternalenergy,thatisbasedonthegraylevelsenergy,ofthattheallowsimageandoneontoaregularizestatisticalthemodel,contour.andtheIthasinternalbeenshownleadstothatasatisfyingtheminimizationtradeoffofbetweenthestochasticthesetwocomplexityenergies[13]forvarioustypesofcontourmodels(spline[14],polygonal[15],levelpropertiesset[16]).intheThecontextresultingofstatisticalsnakesestimationpresentcleartheoryoptimalifthe
processingPh.R´efr´ed’Ing´group,gier FresnelandFr´eInstituted´ericGallandUMRCNRSTICarewiththe6133,PhysicsEcoleandG´eImageMarseilleenieursdeMarseille,DomaineuniversitairedeStJ´en´eralisteeric.galland@fresnel.fr.Cedex20,France.r ome,13397Sacoman,F.Gu´eE-mail:philippe.refregier@fresnel.fr,fred-Martiniswith13016theMarseilleraultiswithSimagD´eveloppement,2all´eeboth.E-mail:France.pascal.martin@fresnel.fr.
E-mail:frederic.guerault@simag.fr.P.apriorigraylevelprobabilitydistribution(GLPD)modeliswelladaptedtothedata.
TheGLPDmodelsthatbelongtotheexponentialfam-ily[10]allowonetodealwithmanyapplications(radarimages,modelsmaylowphotonfailtoprovide ux,...).aNevertheless,fairdescriptionsuchofparametrictheGLPDinsomepracticalcasesanddifferentapproacheswerede-velopedproposedtotoovercomeestimatethesetheGLPDlimitations.ontheInwhole[17],imagetheauthorswithacorrespondsGaussianmixturetoaregion.suchAlthoughthateachthiselementapproachofistheinterestingmixtureandprovidesgoodresultsondifferenttypesofimages,wewillregion.seeInthat[18],itisasupervisedpreferabletomethodestimateisproposedtheGLPDforintextureeachsegmentationtasks.Thisapproachrequirestrainingwhichisanpaper.importantIn[19],difference[20],thewithauthorsthetechniqueproposedproposedanonparametricinthisstatisticalwithParzenapproachwindowsbased[21].onAthelevelestimationsetimplementationoftheGLPDinwhichthevarianceσPoftheGaussiankernelisautomaticallyestimatedapproacheshas[19],also[20],been[22]developedthecriterion[22].toHowever,optimizeincontainstheseatuningparameterinordertobalancethecontributionoftheinternalandoftheexternalenergy.
isWebasedproposeontheinminimizationthispaperaofsegmentationacriterionwithouttechniquetuningthatparameterandthatisnotdedicatedtoaparticularprobabilitydistributionandofthebackgroundfamily.ForarethatdescribedpurposethewithGLPDstepfunctionsoftheobjectwithparametershand.Thisisandannumberimportantofdifferencestepsestimatedtothepreviousfromthecitedimagenon-inparametricstatisticalsnaketechniquesandtoourknowledge,thisacriterionisthe rstwithoutdemonstrationtuningparameterofsnakeandsegmentationthatisnotdedicatedbasedontoaparticularGLPD.Itwillbestudiedwhentheresultsareequivalentmodeladaptedtothetoonesthe uctuationsobtainedwhenpresentaparametricintheimagestatisticalisused.Furthemore,ofthetechniqueweshallproposedalsodemonstrateinthispaper.
thestrongerrobustnessinThesectiongeneralII.ExperimentalmodelofthestochasticresultsarecomplexityprovidedinissectionpresentedIIIonsyntheticandrealimages.
II.MINIMUMSTOCHASTICCOMPLEXITYAPPROACHInthissection,thestochasticcomplexitythatcorrespondstoimagethecriterionwithsnakethatmodelswillbeisminimizedde ned.
inordertosegmentthe
上一篇:岩石力学 松散岩体的围岩压力计算
下一篇:社会实践报告之市场研究调查