IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL.. NO., 1 Nonparam

发布时间:2021-06-06

Abstract — We propose a nonparametric statistical snake technique that is based on the minimization of the stochastic complexity (minimum description length principle). The probability distributions of the gray levels in the different regions of the image

IEEETRANSACTIONSONIMAGEPROCESSING,VOL.??.NO.??,????1

Nonparametricstatisticalsnakebasedonthe

MinimumStochasticComplexity

PascalMARTIN,PhilippeREFREGIER,Fr´ed´ericGALLANDandFr´ed´ericGUERAULT

EDICS:SEGM,NOIS

niqueAbstractplexitythat—isWebasedproposeontheanonparametricminimizationofstatisticalthestochasticsnaketech-com-distributions(minimumdescriptionlengthprinciple).Theprobability

imagearearedescribedofthegraywithlevelsinthedifferentregionsoftheaestimated.Thesegmentationstepfunctionsisthusobtainedwithparametersbyminimizingthatthecriteriontypesuser.ef ciencyofimagesWethatillustratedoesnotincludeanyparametertobetunedbywithleveltherobustnesssetandofthistechniqueonvariousparametricofstatisticalthisapproachtechniques.

isalsopolygonalanalyzedcontourincomparisonmodels.withTheset,Indexsnakes,Termsminimum—Imagedescriptionsegmentation,lengthstochasticprinciple.

complexity,levelA

I.INTRODUCTION

Nimportantgoalofcomputationalvisionandimageobjectsprocessingfromvariousistotypesautomaticallyofimages.recoverOverthetheyears,shapemanyofapproacheshavebeendevelopedtoreachthisgoal.Inthispaper,contourswe(snakes).

focusonthesegmentationofobjectsusingactiveafunctionThe rstinsnakesorder[1]tomoveweredriventhemtowardsbythedesiredminimizationfeatures,ofusuallyedges.Theseapproachesareedgebasedinthesensethatarewelltheinformationadaptedtoausedcertainisclassstrictlyofproblems,alongtheboundary.buttheycanTheyfailinthepresenceofstrongnoisealthoughseveralimprovementsandlimitationsreformulations[2][3](andhavereferencesbeenproposedtherein).toAnotherovercomestrategytheseconsistsinconsideringnotonlytheedges,butalsotheinnerand[6],[7],theouter[8].

regionsde nedbytheactivecontour[4],[5],toInminimizetheregion-basedacriterionapproaches,thatisthethesumcontouroftwoistermsdeformed[9],[10],[11],[12]:theexternalenergy,thatisbasedonthegraylevelsenergy,ofthattheallowsimageandoneontoaregularizestatisticalthemodel,contour.andtheIthasinternalbeenshownleadstothatasatisfyingtheminimizationtradeoffofbetweenthestochasticthesetwocomplexityenergies[13]forvarioustypesofcontourmodels(spline[14],polygonal[15],levelpropertiesset[16]).intheThecontextresultingofstatisticalsnakesestimationpresentcleartheoryoptimalifthe

processingPh.R´efr´ed’Ing´group,gier FresnelandFr´eInstituted´ericGallandUMRCNRSTICarewiththe6133,PhysicsEcoleandG´eImageMarseilleenieursdeMarseille,DomaineuniversitairedeStJ´en´eralisteeric.galland@fresnel.fr.Cedex20,France.r ome,13397Sacoman,F.Gu´eE-mail:philippe.refregier@fresnel.fr,fred-Martiniswith13016theMarseilleraultiswithSimagD´eveloppement,2all´eeboth.E-mail:France.pascal.martin@fresnel.fr.

E-mail:frederic.guerault@simag.fr.P.apriorigraylevelprobabilitydistribution(GLPD)modeliswelladaptedtothedata.

TheGLPDmodelsthatbelongtotheexponentialfam-ily[10]allowonetodealwithmanyapplications(radarimages,modelsmaylowphotonfailtoprovide ux,...).aNevertheless,fairdescriptionsuchofparametrictheGLPDinsomepracticalcasesanddifferentapproacheswerede-velopedproposedtotoovercomeestimatethesetheGLPDlimitations.ontheInwhole[17],imagetheauthorswithacorrespondsGaussianmixturetoaregion.suchAlthoughthateachthiselementapproachofistheinterestingmixtureandprovidesgoodresultsondifferenttypesofimages,wewillregion.seeInthat[18],itisasupervisedpreferabletomethodestimateisproposedtheGLPDforintextureeachsegmentationtasks.Thisapproachrequirestrainingwhichisanpaper.importantIn[19],difference[20],thewithauthorsthetechniqueproposedproposedanonparametricinthisstatisticalwithParzenapproachwindowsbased[21].onAthelevelestimationsetimplementationoftheGLPDinwhichthevarianceσPoftheGaussiankernelisautomaticallyestimatedapproacheshas[19],also[20],been[22]developedthecriterion[22].toHowever,optimizeincontainstheseatuningparameterinordertobalancethecontributionoftheinternalandoftheexternalenergy.

isWebasedproposeontheinminimizationthispaperaofsegmentationacriterionwithouttechniquetuningthatparameterandthatisnotdedicatedtoaparticularprobabilitydistributionandofthebackgroundfamily.ForarethatdescribedpurposethewithGLPDstepfunctionsoftheobjectwithparametershand.Thisisandannumberimportantofdifferencestepsestimatedtothepreviousfromthecitedimagenon-inparametricstatisticalsnaketechniquesandtoourknowledge,thisacriterionisthe rstwithoutdemonstrationtuningparameterofsnakeandsegmentationthatisnotdedicatedbasedontoaparticularGLPD.Itwillbestudiedwhentheresultsareequivalentmodeladaptedtothetoonesthe uctuationsobtainedwhenpresentaparametricintheimagestatisticalisused.Furthemore,ofthetechniqueweshallproposedalsodemonstrateinthispaper.

thestrongerrobustnessinThesectiongeneralII.ExperimentalmodelofthestochasticresultsarecomplexityprovidedinissectionpresentedIIIonsyntheticandrealimages.

II.MINIMUMSTOCHASTICCOMPLEXITYAPPROACHInthissection,thestochasticcomplexitythatcorrespondstoimagethecriterionwithsnakethatmodelswillbeisminimizedde ned.

inordertosegmentthe

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL.. NO., 1 Nonparam.doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219