IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL.. NO., 1 Nonparam(2)
发布时间:2021-06-06
发布时间:2021-06-06
Abstract — We propose a nonparametric statistical snake technique that is based on the minimization of the stochastic complexity (minimum description length principle). The probability distributions of the gray levels in the different regions of the image
2A.Generalmodel
Lets={s(x,y)|(x,y)∈[1,Nx]×[1,NimagetosegmentwithNwithy]}denotethex×Nypixelsandgraylevelsquantizedexample,Qon=Q256levels.).OneOneassumesthushasthats∈the[1,Qimage]withisQcomposed∈N(forofRregions uwithu=1,...,R(notnecessarilysimplyconnected).ThegraylevelsTheofnumber ofpixelsof uwillbenotedNu.uareassumedtobespatiallyuncorrelatedandindependentlystatisticalregion-baseddistributedwithsnakes,GLPDthePuWithcriterion.
thathastoobtainedbeoptimizedbydetermininginorderthetostochastic ndthe nalcomplexitycontourofΓthecanim-beage[14],[15],[16].Withthisapproach,onehastodeterminethethedatasumandofthefornumberthedescriptionofbitsneededofthemodelfortheofdescriptionthedata[13].ofSincetheGLPDthemodelPu,theofstochasticthedataincludescomplexitythecancontourbewrittenmodelasandthesumof3terms
= S+ P+ C
(1)
wherelevels1of SRtheisimagethenumberwithbothofbitsthecontourneededΓtoandcodethetheGLPDsgrayP,...,P xed, PisthenumberofbitsneededtocodethecontourGLPDsΓ.Inandthe following,Cisthenumberthesequantitiesofbitsneededwillbetomeasuredcodetheinnats(i.e.naturallogarithmwillbeconsidered).Wedetailinterms.
thefollowingtheparticularexpressionofthesedifferentB.Graylevelcoding
Thenumberofnats SneededtodescribethegraylevelsofswithgivenGLPDsP1,...,PRissimplyequalto
S=
R)])
(2)
u=1(x,y
log(Pu[s(x,y)∈ u
sincein uthenumberofnatsneededtocodethevalue
s(x,y)withanentropiccode[23]is log(Pu[s(x,y)]).ThechoiceoftheGLPDestimationtechniquewehavedonesimilarissegmentationbasedontwoperformancesconstraints.toThethe rstonesoneobtainedistowithgettechniquesbasedonparametricstatisticalmodelsadaptedtotheatechniquegraylevelwhich uctuations.canleadThetolowsecondcomputationalconstrainttime.istodevelopForthatpurpose,weproposetoestimatetheGLPDineachregion withanirregularstepfunctionPqu
u
(s)withqsteps(Fig.1)
Pqu
(s)
=
qpu(j)Rj(s),(3)
j=1
whereRj(s)=1ifs∈[aj,aj+1[andRj(s)=0otherwise,
withajandwhere∈[1the,Qa],ja1=1,aq+1=Q+1andaj>aiifj>areidenticalforeachdistributionPu
i
thushasPqu
(s)=p.Thisisaq.One
u(j)ifs∈[aj,aj+1[generalmodelthatcandescribeanydistributionofrandomvariablequantizedonQlevels.Inparticular,weshallshowonrealimagessegmentationthatthisforapproachwhichtheallows uctuationsonetoperformare
multiplicative.
SARimageIEEETRANSACTIONSONIMAGEPROCESSING,VOL.??.NO.??,????
Y
CNEUQERFjj+1BINS’INDEX
Fig.(GLPD).1.Illustrationsolidline:ofhistogram,theestimationdottedofthelinegray:steplevelsfunction.
probabilitydistributionIndeed,oncethenoiseispresentineachregionoftheimage,thewaytherandomgraylevelshavebeengeneratedisnomoreimportanttheIndifferentandeachregionregionsonlythedifferencebetweenthehistogramsof isrelevant.
uandforgivenvaluesoftheaj,theMaximumLikelihoodestimationp u(j)ofthepu(j)is
p u(j)=
1
b,
(4)
jNu
wherebj=aj+1 usuchas ajandwhereNu(j)isthenumberofpixelsins∈[aj,aj+1[.Onethusgets
S=
Ru=1 qN(j)logj=1
Nu(j)
uNu)nats.Furthermore,onealsoneedstothatcodecodingq 1thevaluesvaluebbj(since q
j=1bj=Q).Weconsiderjrequiresapproximatelylog(1+bj)natssincebj=1needstobecodedwithatleastonebit.Sincethevaluesbjareequalineachregion,onegets
P=
R(q 1)log
u=1
上一篇:岩石力学 松散岩体的围岩压力计算
下一篇:社会实践报告之市场研究调查